首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the draft genome sequence of Pseudomonas stutzeri TS44, a moderately halotolerant, arsenite-oxidizing bacterium isolated from arsenic-contaminated soil. The genome contains genes for arsenite oxidation, arsenic resistance, and ectoine/hydroxyectoine biosynthesis. The genome information will be useful for exploring adaptation of P. stutzeri TS44 to an arsenic-contaminated environment.  相似文献   

2.
The taxonomic position of the nitrogen-fixing rice isolate A15, previously classified as Alcaligenes faecalis, was reinvestigated. On the basis of its small subunit ribosomal RNA (16S rRNA) sequence this strain identifies as Pseudomonas stutzeri. Phenotyping and fatty acid profiling confirm this result. DNA:DNA hybridisations, using the optical renaturation rate method, between strain A15 and Pseudomonas stutzeri LMG 11199T revealed a mean DNA-binding of 77%. The identification was further corroborated by comparative sequence analysis of the oprF gene, which encodes the major outer membrane protein of rRNA homology group I pseudomonads. Furthermore we determined the nifH sequence of this strain and of two putative diazotrophic Pseudomonas spp. and made a comparative analysis with sequences of other diazotrophs. These Pseudomonas NifH sequences cluster with NifH sequences isolated from the rice rhizosphere by PCR and of proteobacteria from the beta and gamma subclasses.  相似文献   

3.
Here we report the complete genome sequence of Pseudomonas stutzeri strain CGMCC 1.1803 (equivalent to ATCC 17588), the type strain of P. stutzeri, which encodes 4,138 open reading frames on a 4,547,930-bp circular chromosome. The CGMCC 1.1803 genome contains genes involved in denitrification, benzoate/catechol degradation, chemotaxis, and other functions.  相似文献   

4.
5.
Four bacterial strains, Pseudomonas stutzeri var. mendocina, Comamonas sp., Agrobacterium tumefaciens biovar. 2 and Sphingobacterium sp., isolated from the rhizosphere of wild-grown caper (Capparis spinosa L.) plants were able to fix N2 as shown by their growth in nitrogen-free medium and by the acetylene reduction test. P. stutzeri var. mendocina and Comamonas sp. contained DNA homologous to the Klebsiella pneumoniae M5a1 nifHDK genes. No hybridization was found with total DNA from either A. tumefaciens biovar. 2 or Sphingobacterium sp. using nifHDK probes from either K. pneumoniae or Rhizobium meliloti.  相似文献   

6.
Pseudomonas stutzeri strain ZoBell, formerly a strain of Pseudomonas perfectomarina (CCUG 16156 = ATCC 14405), is a model organism for denitrification. It was isolated by ZoBell in 1944 from a marine sample, and here we report the first genome draft of a strain assigned to genomovar 2 of the species P. stutzeri.  相似文献   

7.
Large Pseudomonas phages isolated from barley rhizosphere   总被引:1,自引:0,他引:1  
Abstract: Five bacteriophages infecting common fluorescent pseudomonads ( Pseudomonas fluorescens and Pseudomonas putida ) were isolated from barley rhizosphere soil. Morphological and molecular characteristics of the phages are described together with selected phage-host interactions. All phages belonged to the Myoviridae family with isometrical heads on contractile tails; 4 of them were unusually large and had complex protein and DNA profiles. The large phages had estimated genome sizes of 200 kb or more. Restriction enzyme analyses and DNA-DNA hybridizations showed that all isolates represented different phage species. None of the isolates were observed to establish lysogeny with the main host strain, P. putida MM1. The large phages multiplied slowly on their hosts, producing very small plaques; one-step growth experiments with one of the large phages (Psp 4) hence demonstrated a long latent period (2.5 h) and a very small burst size (10 particles). One of the large phages (Psp 3) was abundant in the rhizosphere (approx. 104 pfu g−1 soil) and had a particularly broad host range which extended to both fluorescent ( Pseudomonas aeruginosa, P. fluorescens, P. putida and Pseudomonas chlororaphis ) and non-fluorescent (Pseudomonas stutzeri) Pseudomonas spp. occurring in soil. The ecological importance of the large Pseudomonas phages must be further studied, but their slow multiplication rates suggested a possible mechanism of balanced phage-host co-existence in the rhizosphere.  相似文献   

8.
R Bosch  E García-Valdés  E R Moore 《Gene》1999,236(1):149-157
Pseudomonas stutzeri strain AN10 is a naphthalene-degrading strain whose dissimilatory genes are chromosomally encoded. We sequenced a total of 11514bp including the entire naphthalene-degradation upper pathway (nah) of P. stutzeri AN10. Nine open reading frames, nahAaAbAcAdBFCED, encoding the enzymes for the degradation of naphthalene to salicylate, were identified. The nah genes of P. stutzeri AN10 have been compared with genes encoding isofunctional proteins from other Pseudomonas naphthalene-degradation upper pathways. The implications of the sequence homologies to the evolution of aromatic catabolic pathways are discussed. Our findings indicate that this entire catabolic module of P. stutzeri AN10 was recruited from other microorganisms and a short period of time has elapsed after its incorporation within the P. stutzeri AN10 genome. Comparisons also suggest the coexistence of two entire nah upper pathways in a host strain, and further recombination between them. These events could accelerate the evolution of modern catabolic pathways.  相似文献   

9.
Lowering of plant ethylene by deamination of its immediate precursor 1-aminocyclopropane-1-carboxylate (ACC) is a key trait found in many rhizobacteria. We isolated and screened bacteria from the rhizosphere of wheat for their ACC-degrading ability. The ACC deaminase gene (acdS) isolated from two bacterial isolates through PCR amplification was cloned and sequenced. Nucleotide sequence alignment of these genes with previously reported genes of Pseudomonas sp. strain ACP and Enterobacter cloacae strain UW4 showed variation in their sequences. In the phylogenetic analysis, distinctness of these two genes was observed as a separate cluster. 16S rDNA sequencing of two isolates identified them to be Achromobacter sp. and Pseudomonas stutzeri.  相似文献   

10.
The arrangement of the genes involved in o-xylene, m-xylene, and p-xylene catabolism was investigated in three Pseudomonas stutzeri strains: the wild-type strain OX1, which is able to grow on o-xylene but not on the meta and para isomers; the mutant M1, which grows on m-xylene and p-xylene but is unable to utilize the ortho isomer; and the revertant R1, which can utilize all the three isomers of xylene. A 3-kb insertion sequence (IS) termed ISPs1, which inactivates the m-xylene and p-xylene catabolic pathway in P. stutzeri OX1 and the o-xylene catabolic genes in P. stutzeri M1, was detected. No IS was detected in the corresponding catabolic regions of the P. stutzeri R1 genome. ISPs1 is present in several copies in the genomes of the three strains. It is flanked by 24-bp imperfect inverted repeats, causes the direct duplication of 8 bp in the target DNA, and seems to be related to the ISL3 family.  相似文献   

11.
Pseudomonas stutzeri strain JM300 (DSM 10701) is a denitrifying soil isolate and a model organism for natural transformation in bacteria. Here we report the first complete genome sequence of JM300, the reference strain of genomovar 8 for the species.  相似文献   

12.
Jiang T  Gao C  Su F  Zhang W  Hu C  Dou P  Zheng Z  Tao F  Ma C  Xu P 《Journal of bacteriology》2012,194(4):894-895
Pseudomonas stutzeri SDM-LAC is an efficient lactate utilizer with various applications in biocatalysis. Here we present a 4.2-Mb assembly of its genome. The annotated four adjacent genes form a lactate utilization operon, which could provide further insights into the molecular mechanism of lactate utilization.  相似文献   

13.
The nitrous oxide (N(2)O) reduction pathway from a soil bacterium, Pseudomonas stutzeri, was engineered in plants to reduce N(2)O emissions. As a proof of principle, transgenic plants expressing nitrous oxide reductase (N(2)OR) from P. stutzeri, encoded by the nosZ gene, and other transgenic plants expressing N(2)OR along with the more complete operon from P. stutzeri, encoded by nosFLZDY, were generated. Gene constructs were engineered under the control of a root-specific promoter and with a secretion signal peptide. Expression and rhizosecretion of the transgene protein were achieved, and N(2)OR from transgenic Nicotiana tabacum proved functional using the methyl viologen assay. Transgenic plant line 1.10 showed the highest specific activity of 16.7 μmol N(2)O reduced min(-1) g(-1) root protein. Another event, plant line 1.9, also demonstrated high specific activity of N(2)OR, 13.2 μmol N(2)O reduced min(-1) g(-1) root protein. The availability now of these transgenic seed stocks may enable canopy studies in field test plots to monitor whole rhizosphere N flux. By incorporating one bacterial gene into genetically modified organism (GMO) crops (e.g., cotton, corn, and soybean) in this way, it may be possible to reduce the atmospheric concentration of N(2)O that has continued to increase linearly (about 0.26% year(-1)) over the past half-century.  相似文献   

14.
Unlike most bacteria, the nitrogen-fixing rice-associated Pseudomonas stutzeri A15 disposes of three different nitrate reductases that enable conversion of nitrate to nitrite through three physiologically distinct processes, called nitrate assimilation, nitrate respiration and nitrate dissimilation. To study the role of nitrate respiration in rhizosphere fitness, a Pseudomonas stutzeri narG mutant was constructed and characterized by assessing its growth characteristics and whole-cell nitrate reductase activity in different oxygen tensions. Unexpectedly, the Pseudomonas stutzeri A15 narG mutant appeared to be a better root colonizer, outcompeting the wild type strain in a wheat and rice hydroponic system.  相似文献   

15.
Bosch R  García-Valdés E  Moore ER 《Gene》2000,245(1):65-74
Pseudomonas stutzeri strain AN10 is a naphthalene-degrading strain whose dissimilatory genes are chromosomally encoded. We sequenced the entire naphthalene-degradation lower pathway of P. stutzeri AN10, this being, together with the upper-pathway reported previously (Bosch R. et al., 1999a. Gene 236, 149-157) the first complete DNA sequence for an entire naphthalene-catabolic pathway. Eleven open reading frames were identified. The nahGTHINLOMKJ genes encode enzymes for the metabolism of salicylate to pyruvate and acetyl-CoA, and nahR encodes the NahR regulatory protein. Our findings suggest that catabolic modules were recruited through transposition events and recombination among tnpA-like genes, and subsequent rearrangements and deletions of non-essential DNA fragments allowed the formation of the actual catabolic pathway. Our results also suggest that the genes encoding the xylene/toluene-degradation enzymes of P. putida mt-2 (pWW0) have coexisted with the nah genes of the P. stutzeri AN10 ancestral genome. This could allow the selection, via recombination events among homologous genes, for a combination of genes enabling the metabolism of a given aromatic compound in the ancestral host strain. Such events accelerate the evolution of modern catabolic pathways and provide new genetic material to the environment, ultimately resulting in improved, natural, bioremediation potential.  相似文献   

16.
IVET was used to identify genes that are specifically expressed in the rhizosphere of the pea-nodulating bacterium Rhizobium leguminosarum A34. A library of R. leguminosarum A34 cloned in the integration vector pIE1, with inserts upstream of a promoter-less purN:gfp:gusA, was conjugated into purN host RU2249 and recombined into the genome. After removal of colonies that expressed the reporter genes of the vector under laboratory conditions, the library was inoculated into a nonsterile pea rhizosphere. The key result is that 29 rhizosphere-induced loci were identified. Sequence analysis of these clones showed that a wide variety of R. leguminosarum A34 genes are expressed specifically in the rhizosphere including those encoding proteins involved in environmental sensing, control of gene expression, metabolic reactions and membrane transport. These genes are likely to be important for survival and colonization of the pea rhizosphere.  相似文献   

17.
Hu D  Li X  Chang Y  He H  Zhang C  Jia N  Li H  Wang Z 《Journal of bacteriology》2012,194(6):1627
Streptomyces sp. strain TOR3209, isolated from tomato rhizosphere, can regulate the rhizosphere microecology of a variety of crops. Strain TOR3209 could improve plant systemic resistance and promote plant growth. Here, the genome sequence of strain TOR3209 is reported, providing the molecular biological basis of the regulation mechanism of rhizosphere microecology.  相似文献   

18.
The nptII(+) gene present in the genome of transgenic potato plants transforms naturally competent cells of the soil bacteria Pseudomonas stutzeri and Acinetobacter BD413 (both harboring a plasmid with an nptII gene containing a small deletion) with the same high efficiency as nptII(+) genes on plasmid DNA (3x10(-5)-1x10(-4) transformants per nptII(+)) despite the presence of a more than 10(6)-fold excess of plant DNA. However, in the absence of homologous sequences in the recipient cells the transformation by nptII(+) dropped by at least about 10(8)-fold in P. stutzeri and 10(9)-fold in Acinetobacter resulting in the latter strain in < or =1x10(-13) transformants per nptII(+). This indicated a very low probability of non-homologous DNA fragments to be integrated by illegitimate recombination events during transformation.  相似文献   

19.
Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) that has biocontrol activity against fungal plant pathogens and is a model for rhizosphere colonization. Here, we present its complete genome sequence, which shows that besides a core genome very similar to those of other strains sequenced within this species, F113 possesses a wide array of genes encoding specialized functions for thriving in the rhizosphere and interacting with eukaryotic organisms.  相似文献   

20.
Kim BK  Jung MY  Yu DS  Park SJ  Oh TK  Rhee SK  Kim JF 《Journal of bacteriology》2011,193(19):5539-5540
Ammonia-oxidizing archaea are ubiquitous microorganisms which play important roles in global nitrogen and carbon cycle on earth. Here we present the high-quality draft genome sequence of an ammonia-oxidizing archaeon, "Candidatus Nitrosopumilus koreensis" MY1, that dominated an enrichment culture of a soil sample from the rhizosphere. Its genome contains genes for survival in the rhizosphere environment as well as those for carbon fixation and ammonium oxidation to nitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号