首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa lipopolysaccharide (LPS) contains two glycoforms of core oligosaccharide (OS); one form is capped with O antigen through an alpha-1,3-linked L-rhamnose (L-Rha), while the other is uncapped and contains an alpha-1,6-linked L-Rha. Two genes in strain PAO1, wapR (PA5000) and migA (PA0705), encode putative glycosyltransferases associated with core biosynthesis. We propose that WapR and MigA are the rhamnosyltransferases responsible for the two linkages of L-Rha to the core. Knockout mutants with mutations in both genes were generated. The wapR mutant produced LPS lacking O antigen, and addition of wapR in trans complemented this defect. The migA mutant produced LPS with a truncated outer core and showed no reactivity to outer core-specific monoclonal antibody (MAb) 5C101. Complementation of this mutant with migA restored reactivity of the LPS to MAb 5C101. Interestingly, LPS from the complemented migA strain was not reactive to MAb 18-19 (specific for the core-plus-one O repeat). This was due to overexpression of MigA in the complemented strain that caused an increase in the proportion of the uncapped core OS, thereby decreasing the amount of the core-plus-one O repeat, indicating that MigA has a regulatory role. The structures of LPS from both mutants were elucidated using nuclear magnetic resonance spectroscopy and mass spectrometry. The capped core of the wapR mutant was found to be truncated and lacked alpha-1,3-L-Rha. In contrast, uncapped core OS from the migA mutant lacked alpha-1,6-L-Rha. These results provide evidence that WapR is the alpha-1,3-rhamnosyltransferase, while MigA is the alpha-1,6-rhamnosyltransferase.  相似文献   

2.
In order to examine the immunochemistry of the core-lipid A region of Pseudomonas aeruginosa lipopolysaccharide (LPS), monoclonal antibodies (MAbs) specific for this region were produced in mice. Immunogen was prepared by coating a rough mutant of P. aeruginosa with column-purified core oligosaccharide fractions in order to enhance the immune response to the LPS core-lipid A region. Fourteen hybridoma clones were isolated, characterized, and further divided into three groups on the basis of their reactivities to rough LPS antigens in both enzyme-linked immunosorbent assays and Western immunoblots. In addition, another MAb, 18-19, designated group 1, was included in this study for defining core-lipid A epitopes. MAb 18-19 recognizes the LPS core-plus-one O-repeat unit of the serologically cross-reactive P. aeruginosa O2, O5, and O16. Group 2 MAbs are specific for the LPS outer core region and reacted with P. aeruginosa O2, O5, O7, O8, O10, O16, O18, O19, and O20, suggesting that these serotypes share a common outer core type. Group 3 MAbs recognize the inner core region and reacted with all 20 P. aeruginosa serotypes as well as with other Pseudomonas species, revealing the conserved nature of this region. Group 4 MAbs are specific for lipid A and reacted with all gram-negative organisms tested. Immunoassays using these MAbs and well-defined rough mutants, in addition to the recently determined P. aeruginosa core structures, have allowed us to precisely define immunodominant epitopes within the LPS core region.  相似文献   

3.
Lipopolysaccharides (LPS) were isolated from rough-type mutant strains of Pseudomonas aeruginosa (Delta algC) derived from wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Structural studies of the LPS core region with a special focus on the phosphorylation pattern were performed by 2D NMR spectroscopy, including a 1H,(31)P HMQC-TOCSY experiment, MALDI-TOF MS, and Fourier-transform ion cyclotron resonance ESIMS using the capillary skimmer dissociation technique. Both LPS were found to contain two residues each of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and L-glycero-D-manno-heptose (Hep), one residue of N-(L-alanyl)-D-galactosamine and one O-carbamoyl group (Cm) on the distal Hep residue. The following structures of a tetrasaccharide trisphosphate from strain PAC1R Delta algC and that carrying an additional ethanolamine phosphate group (PEtN) from strain PAO1 Delta algC were elucidated: [carbohydrate structre: see text] where R=P in PAC1R Delta algC and PPEtN in PAO1 Delta algC. To our knowledge, in this work the presence of ethanolamine diphosphate is unambiguously confirmed and its position established for the first time in the LPS core of a rough-type strain of P. aeruginosa. In addition, the structure of the complete LPS core of wild-type strain P. aeruginosa PAO1 was reinvestigated and the position of the phosphorylation sites was revised.  相似文献   

4.
The point of attachment of the O-chain in the outer core region of Pseudomonas aeruginosa serotype O5 lipopolysaccharide (LPS) was determined following a detailed analysis of the extended core oligosaccharide, containing one trisaccharide O-chain repeating unit, present in both the wild-type strain PAO1 and O-chain deficient mutant strains AK1401 and PAO-rfc. The structure of the extended core oligosaccharide was determined by various mass spectrometric methods as well as one-dimensional and two-dimensional NMR spectroscopy. Furthermore, the one-dimensional analogues of NOESY and TOCSY experiments were applied to confirm the structure of the outer core region in the O-chain polysaccharide. In both the extended core oligosaccharide and the core of the smooth LPS, a loss of one of the beta-glucosyl residues and the translocation of the alpha-rhamnosyl residue, followed by the attachment of the first O-chain repeating unit was observed. This process is complicated and could involve two distinct rhamnosyltransferases, one with alpha-1, 6-linkage specificity and another with alpha-1,3-linkage specificity. It is also plausible that an alpha-1,3 rhamnosyltransferase facilitates the addition of the 'new' alpha-rhamnosyl residue that will act as a receptor for the attachment of the single O-antigen repeating unit in the LPS of the semi-rough mutant. The 2-amino-2-deoxy-fucosyl residue of the first O-chain repeating unit directly attached to the core was found to have a beta-anomeric configuration instead of an alpha configuration, characteristic for this residue as a component of the O-chain polysaccharide. The results of this study provide the first example of the mechanistic implications of the structure of the outer core region in a fully assembled O-chain containing LPS, differing from the O-chain deficient rough LPS.  相似文献   

5.
The structure of the phase-variable lipopolysaccharide (LPS) from the group B Neisseria meningitidis strain BZ157 galE was elucidated. The structural basis for the LPS's variation in reactivity with a monoclonal antibody (MAb) B5 that has specificity for the presence of phosphoethanolamine (PEtn) at the 3-position of the distal heptose residue (HepII) was established. The structure of the O-deacylated LPS was deduced by a combination of monosaccharide analyses, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. These analyses revealed the presence of a novel inner core oligosaccharide (OS) structure in the MAb B5 reactive (B5+) LPS that contained two PEtn residues simultaneously substituting the 3- and 6-positions of the HepII residue. The determination of this structure has identified a further degree of variability within the inner core OS of meningococcal LPS that could contribute to the interaction of meningococcal strains with their host.  相似文献   

6.
We investigated whether Pseudomonas aeruginosa produces two distinct lipopolysaccharides (LPS) containing either serologically variable O side chains or a neutral polysaccharide common antigen, designated A bands, that reacts with monoclonal antibody (MAb) E87. Immunoprecipitation of LPS and free O side chains with O-side-chain-specific antibodies or MAb E87 resulted in coprecipitation of both polysaccharides when antibody of either specificity was employed. Chromatography of LPS and free O side chains in a disaggregating deoxycholate buffer indicated the two polysaccharide antigens cochromatograph when eluates were analyzed by sensitive and specific enzyme-linked immunosorbent assay inhibitions. The LPS from a mutant of strain PAO1 that lacks polymerized O side chains but retains the common antigen eluted in fractions containing smaller LPS molecules, indicating the necessity of polymerized O side chains for elution in early fractions containing large LPS monomers. A phosphomannomutase mutant of P. aeruginosa PAO1 makes a rough LPS lacking both O side chains and common antigen but still produces a small (< 6-kDa) common antigen component detectable in cell lysates. Introduction of the cloned pmm gene into this strain restored production of a smooth LPS expressing large MAb E87-reactive common antigen. Destruction with NaOH of O side chains on recombinant LPS molecules eluting early from the molecular sieve column resulted in a shift of the MAb E87-reactive antigen to the late-eluting fractions. These results indicate that on most P. aeruginosa LPS molecules, O side chains and neutral polysaccharide common antigens are both present.  相似文献   

7.
We investigated the phi PLS27 receptor in Pseudomonas aeruginosa strain PAO lipopolysaccharide (LPS) by analyzing a resistant mutant. This mutant, which was designated AK1282, had the most defective LPS yet reported for a P. aeruginosa rough mutant; this LPS contained only lipid A, 2-keto-3-deoxyoctonate, heptose, and alanine as major components. In addition, this LPS lacked galactosamine, which is present in the inner core of the LPS of other rough mutants. The loss of galactosamine but only a small decrease in the alanine content indicated that the core of strain PAO LPS differed from the core structure which has been suggested for the LPS of other well-characterized P. aeruginosa strains. Our analysis also indicated that galactosamine residues may be crucial for phi PLS27 receptor activity of the LPS. Electrodialysis of LPS and conversion to salt forms (sodium or triethylamine) influenced the phage-inactivating capacity of the LPS, as did the medium in which the inactivation occurred; experiments performed in 1/10-strength broth resulted in much lower PhI50 (concentration of LPS causing a 50% decrease in the titer of phage during 1 h of incubation at 37 degrees C) values than experiments performed in regular-strength broth. Sonication of the LPS also increased the phage-inactivating capacities of the LPS preparations.  相似文献   

8.
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that infects immunocompromised patients and trauma victims and causes fatal lung infections in people with cystic fibrosis. This microorganism produces a number of virulence factors, one of which is lipopolysaccharide (LPS), which has been shown to mediate many biological effects including resistance to serum killing and phagocytosis. These biological activities have been correlated to the length of the O-polysaccharide and its distribution on the outer membrane. Wzz is responsible for regulation of the size distribution of the O-antigen. Wzz has been found to participate solely in the Wzy-dependent pathway for LPS biosynthesis, which produces heteropolymeric O-polysaccharide such as the B-band LPS of P. aeruginosa. Our laboratory has previously reported characterization of a Wzz protein encoded in the B-band O-antigen biosynthesis cluster of PAO1. The availability of the genome sequence of P. aeruginosa PAO1 has made it possible to identify a second functional Wzz protein (PA0938, Wzz2). Gene replacement was used to generate an unmarked wzz2delta knock-out and a wzz2delta/wzz1::Gm double knock-out. As expected, the wzz2delta strain produced LPS with modal length imparted by Wzz1, and the wzz2delta/wzz1::Gm strain produced LPS O-antigen with a non-modal (random) length. Both wzz1 and wzz2 from P. aeruginosa PAO1 were cloned and expressed with an N-terminal His6 tag. His6-Wzz1 and His6-Wzz2 were purified to near homogeneity by immobilized metal affinity chromatography (IMAC). These preparations were used to develop specific polyclonal antibodies against each of the proteins. In vivo protein cross-linking followed by Western immunoblotting indicated that Wzz1 forms dimers whereas Wzz2 forms octamers. By generation of a wzz2delta/rmlC double mutant and analysis of the LPS, we have made the novel observation that polymerization of modal chain length-distributed O-antigen occurred before ligation to the lipid A core. We have shown an association between the Wzz proteins and O-antigen polymer chains using immunoprecipitation with anti-O5 O-antigen monoclonal antibody MF15-4. Both Wzz1 and Wzz2 could be co-precipitated with O5 polymer.  相似文献   

9.
Most strains of Pseudomonas aeruginosa can express two chemically and immunologically distinct types of lipopolysaccharide (LPS), an antigenically conserved form called A band and the serotype-specific form called B band. To study the molecular controls regulating expression of the A-band LPS antigen, we have cloned the genes involved with A-band LPS expression. Strain AK1401, a phage-resistant mutant of PAO1 which was shown previously to produce only A-band LPS and not the O-antigen-containing B-band LPS, was mutagenized by using ethyl methanesulfonate to generate an A-band-deficient mutant called rd7513. A cosmid clone bank of P. aeruginosa PAO1 whole genomic DNA was constructed in Escherichia coli. The gene bank was mobilized en masse into strain rd7513, and detection of complementation of synthesis of A band was done by screening transconjugants in a colony immunoblot assay with the A-band-specific monoclonal antibody N1F10. One recombinant cosmid, pFV3, complemented synthesis of A-band polysaccharide in rd7513. Silver-stained polyacrylamide gel and Western immunoblot analyses of LPS extracted from the transconjugant rd7513(pFV3) showed that the A band produced had a higher molecular weight than the A band of AK1401. Analysis of the plasmid pFV3 showed that it contained a chromosomal insert of 27 kb. Two subclones of pFV3, namely, pFV35 and pFV36, containing chromosomal inserts of 5.3 and 4.2 kb, respectively, also complemented A-band expression in rd7513. The LPS banding profile of rd7513(pFV35) was similar to that of AK1401, while the LPS profile of rd7513(pFV36) more closely resembled that of rd7513(pFV3). pFV3 complemented A-band expression in five of the six P. aeruginosa O serotypes which lack A band as well as in rough strain AK44 but failed to complement A-band expression in core mutants AK1012 and AK1282, suggesting that pFV3 contains genes for A-band expression and that synthesis of a complete core region in isogenic mutant strains is required for A-band synthesis.  相似文献   

10.
We have constructed strains of Pseudomonas aeruginosa with mutations in the algC gene, previously shown to encode the enzyme phosphomannomutase. The algC mutants of a serotype O5 strain (PAO1) and a serotype O3 strain (PAC1R) did not express lipopolysaccharide (LPS) O side chains or the A-band (common antigen) polysaccharide. The migration of LPS from the algC mutant strains in Tricine-sodium dodecyl sulfate-polyacrylamide gels was similar to that of LPS from a PAO1 LPS-rough mutant, strain AK1012, and from a PAC1R LPS-rough mutant, PAC605, each previously shown to be deficient in the incorporation of glucose onto the LPS core (K. F. Jarrell and A. M. Kropinski, J. Virol. 40:411-420, 1981, and P. S. N. Rowe and P. M. Meadow, Eur. J. Biochem. 132:329-337, 1983). We show that, as expected, the algC mutant strains had no detectable phosphomannomutase activity and that neither algC strain had detectable phosphoglucomutase (PGM) activity. To confirm that the PGM activity was encoded by the algC gene, we transferred the cloned, intact P. aeruginosa algC gene to a pgm mutant of Escherichia coli and observed complementation of the pgm phenotype. Our finding that the algC gene product has PGM activity and that strains with mutations in this gene produce a truncated LPS core suggests that the synthesis of glucose 1-phosphate is necessary in the biosynthesis of the P. aeruginosa LPS core. The data presented here thus demonstrate that the algC gene is required for the synthesis of a complete LPS core in two strains with different LPS core and O side chain structures.  相似文献   

11.
K Jarrell  A M Kropinski 《Microbios》1977,19(76):103-116
The chemical composition of the lipopolysaccharide (LPS) of the smooth strain Pseudomonas aeruginosa PAO 307 and a spontaneously derived rough mutant, obtained by selection for resistance to the LPS-specific phage E79, are compared. The rough LPS was shown to contain lipid A, heptose, 2-keto 3-deoxyoctonic acid, galactosamine, alanine and phosphate but lacked glucose, rhamnose and fucosamine which were important constituents, on a weight basis, of the smooth LPS. These results, and chromatographic analysis of the polysaccharide fraction indicate that the rough strain lacked side chain material and was defective in its inner core region. The chemical date obtained were consistent with a core in the PAO strain similar to that of strain NCTC 1999, enhancing the evidence for a common core polysaccharide in the LPS of P. aeruginosa strains.  相似文献   

12.
The O antigen of Pseudomonas aeruginosa B-band lipopolysaccharide is synthesized by assembling O-antigen-repeat units at the cytoplasmic face of the inner membrane by nonprocessive glycosyltransferases, followed by polymerization on the periplasmic face. The completed chains are covalently attached to lipid A core by the O-antigen ligase, WaaL. In P. aeruginosa the process of ligating these O-antigen molecules to lipid A core is not clearly defined, and an O-antigen ligase has not been identified until this study. Using the sequence of waaL from Salmonella enterica as a template in a BLAST search, a putative waaL gene was identified in the P. aeruginosa genome. The candidate gene was amplified and cloned, and a chromosomal knockout of PAO1 waaL was generated. Lipopolysaccharide (LPS) from this mutant is devoid of B-band O-polysaccharides and semirough (SR-LPS, or core-plus-one O-antigen). The mutant PAO1waaL is also deficient in the production of A-band polysaccharide, a homopolymer of D-rhamnose. Complementation of the mutant with pPAJL4 containing waaL restored the production of both A-band and B-band O antigens as well as SR-LPS, indicating that the knockout was nonpolar and waaL is required for the attachment of O-antigen repeat units to the core. Mutation of waaL in PAO1 and PA14, respectively, could be complemented with waaL from either strain to restore wild-type LPS production. The waaL mutation also drastically affected the swimming and twitching motilities of the bacteria. These results demonstrate that waaL in P. aeruginosa encodes a functional O-antigen ligase that is important for cell wall integrity and motility of the bacteria.  相似文献   

13.
Abstract Fructose, a rarely occurring sugar constituent of Gram-negative bacterial lipopolysaccharides (LPS), is distributed ubiquitously in LPS of 01 Vibrio cholerae so far examined, but its location in LPS has not hitherto been elucidated. It was found that hydrazinolysis of LPS successfully affords a derivative retaining virtually all the fructose of intact LPS, but no ester-bound phosphate. Structural analysis carried out on the LPS derivative prepared by the hydrazinolysis of R-type LPS isolated from a rough mutant strain (NIH 41R) of 01 V. cholerae NIH 41 (Ogawa) revealed that the fructose is present as a non-reducing terminal residue bound to position C-6 of a glucose residue in the core region. This finding is considered to exclude the possibility that, in the LPS of 01 V. cholerae , the fructose is present in the region of the inner core in place of 2-keto-3-deoxyoctonate.  相似文献   

14.
Pseudomonas aeruginosa secretes a wide range of hydrolytic enzymes into the external medium by the Xcp secretion machinery. To better understand the role played by envelope constituents in the functioning of this type II secretory system, we have studied the influence of lipopolysaccharide (LPS) on the secretion of two extracellular enzymes, the elastase LasB and the lipase LipA. Strains with defective LPS decreased production of LasB and altered the secretion processes of both LasB and LipA without any apparent effect on the composition of the Xcp machinery. The PAO1algC strain, defective in the outer core of LPS, was leaky, as shown by the extracellular release of the periplasmic beta-lactamase. Generation of an xcpR mutation in this mutant led only to a partial accumulation of LasB within the cells, indicating that in strain PAO1algC with a functional xcpR gene, LasB was released in the extracellular medium partly by leakage and partly by secretion. The pool of LasB released into the medium by leakage was not recovered in an active form, while extracellular LasB was active when secreted via the secretory machinery. Further analysis revealed that the presence of a functional Xcp machinery is strictly required for the activation process of LasB. Our results provide evidence that the Xcp system is not fully functional when the LPS structure of P. aeruginosa is altered.  相似文献   

15.
The majority of Pseudomonas aeruginosa strains synthesize two antigenically distinct types of lipopolysaccharide (LPS), namely, a serotype-specific B-band LPS and a common antigen A-band LPS. A-band LPS consists of uncharged poly-D-rhamnan, which does not bind uranyl ions and is difficult to stain for electron microscopy; the highly charged B-band LPS is more easily visualized. We selected two wild-type strains, PAO1 (serotype O5) and IATS O6 (serotype O6), generated isogenic mutants from them, and examined the distribution of LPS on the surface of these organisms by freeze-substitution and electron microscopy. On PAO1 cells, which express both A-band and B-band LPSs, a 31- to 36-nm-wide fringe extending perpendicularly from the outer membrane was observed. A fine fibrous material was also observed on the surface of serotype O6 (A+ B+) cells, although this material did not form a uniform layer. When the LPS-deficient mutants, strains AK1401 (A+ B-), AK 1012 (A- B-), rd7513 (A- B-), and R5 (an IATS O6-derived rough mutant; A- B-), were examined, no extraneous material was apparent above the bilayer. However, an asymmetrical staining pattern was observed on the outer leaflet of the outer membrane of each of these mutants, presumably conforming to the anionic charge distribution of the core region of the rough LPS. In all cases, expression of the LPS types was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. When optical densitometry on electron microscopy negatives was used to analyze the outer membrane staining profiles, subtle differences in the degrees of core deficiency among rough mutants were detectable. This is the first time an electron microscopy technique has preserved the infrastructure produced in the outer membrane by its constituent macromolecules. We conclude that freeze-substitution electron microscopy is effective in the visualization of LPS morphotypes.  相似文献   

16.
17.
Abstract Adsorption of bacteriophage Mu with its invertible DNA segment in the G(−) orientation requires a terminal glucose residue for binding to the core lipopolysaccharide (LPS) of Gram-negative bacteria. Analysis of a Mu-resistant mutant shows that the receptor for Mu G(−) in Erwinia B374 is a Glc-β1,6-Glc disaccharide. A spontaneously occurring host-range mutant, Mu G(−)h101, grows on Escherichia coli C. The loss of the terminal β1,3-linked glucose from the LPS of E. coli C leads to resistance to the phage Mu. These mutants are also resistant to phage P1 and D108 which have largely homologous G segments. This shows that Mu G(+) and G(−) phage particles differ with respect to their cell-wall receptors in the type of glycosidic linkage of a terminal glucose residue: α1, 2 for G(+) and β1,6 for G(−).  相似文献   

18.
We investigated the conservation and antibody accessibility of inner core epitopes of Moraxella catarrhalis lipopolysaccharide (LPS) in order to assess their potential as vaccine candidates. Two LPS mutants, a single mutant designated lgt2 and a double mutant termed lgt2/lgt4, elaborating truncated inner core structures were generated in order to preclude expression of host-like outer core structures and to create an inner core structure that was shared by all three serotypes A, B and C of M. catarrhalis. Murine monoclonal antibodies (mAbs), designated MC2-1 and MC2-10 were obtained by immunising mice with the lgt2 mutant of M. catarrhalis serotype A strain. We showed that mAb MC2-1 can bind to the core LPS of wild-type (wt) serotype A, B and C organisms and concluded that mAb MC2-1 defines an immunogenic inner core epitope of M. catarrhalis LPS. We were unsuccessful in obtaining mAbs to the lgt2/lgt4 mutant. MAb MC2-10 only recognised the lgt2 mutant and the wt serotype A strain, and exhibited a strong requirement for the terminal N-acetyl-glucosamine residue of the lgt2 mutant core oligosaccharide, suggesting that this residue was immunodominant. Subsequently, we showed that both mAbs MC2-1 and MC2-10 could facilitate bactericidal killing of the lgt2 mutant, however neither mAb could facilitate bactericidal killing of the wt serotype A strain. We then confirmed and extended the candidacy of the inner core LPS by demonstrating that it is possible to elicit functional antibodies against M. catarrhalis wt strains following immunisation of rabbits with glycoconjugates elaborating the conserved inner core LPS antigen. The present study describes three conjugation strategies that either uses amidases produced by Dictyostelium discoideum, targeting the amino functionality created by the amidase activity as the attachment point on the LPS molecule, or a strong base treatment to remove all fatty acids from the LPS, thus creating amino functionalities in the lipid A region to conjugate via maleimide-thiol linker strategies targeting the carboxyl residues of the carrier protein and the free amino functionalities of the derived lipid A region of the carbohydrate resulted in a high loading of carbohydrates per carrier protein from these carbohydrate preparations. Immunisation derived antisera from rabbits recognised fully extended M. catarrhalis LPS and whole cells. Moreover, bactericidal activity was demonstrated to both the immunising carbohydrate antigen and importantly to wt cells, thus further supporting the consideration of inner core LPS as a potential vaccine antigen to combat disease caused by M. catarrhalis.  相似文献   

19.
The invasion of Pseudomonas aeruginosa and Salmonella enterica serovar Typhi into epithelial cells depends on the cystic fibrosis transmembrane conductance regulator (CFTR) protein as an epithelial receptor. In the case of P. aeruginosa , the bacterial ligand for CFTR is the outer core oligosaccharide portion of the lipopolysaccharide (LPS). To determine whether serovar Typhi LPS is also a bacterial ligand mediating internalization, we used both P. aeruginosa and serovar Typhi LPS as a competitive inhibitor of serovar Typhi invasion into the epithelial cell line T84. P. aeruginosa LPS containing a complete core efficiently inhibited serovar Typhi invasion. However, neither killed wild-type Typhi cells nor purified LPS were effective inhibitors. LPS from mutant Typhi strains defective in O side-chain synthesis, but with an apparently normal core, was capable of inhibiting invasion, but LPS obtained from a deeper rough mutant strain with alterations in fast-migrating core oligosaccharide failed to inhibit invasion. Lastly, exposure of wild-type serovar Typhi to T84 cultures before heat killing resulted in a structural alteration in its LPS that allowed the heat-killed cells to inhibit invasion of wild-type serovar Typhi. These data indicate that the serovar Typhi LPS core, like the P. aeruginosa LPS core, is a ligand mediating internalization of bacteria by epithelial cells, and that exposure of this ligand on wild-type Typhi is induced by the bacteria's interaction with host cells.  相似文献   

20.
The lipopolysaccharide of Pseudomonas aeruginosa O-12 was studied by strong alkaline and mild acid degradations and dephosphorylation followed by fractionation of the products by GPC and high-performance anion-exchange chromatography and analyses by ESI FT-MS and NMR spectroscopy. The structures of the lipopolysaccharide core and the O-polysaccharide repeating unit were elucidated and the site and the configuration of the linkage between the O-polysaccharide and the core established. The core was found to be randomly O-acetylated, most O-acetyl groups being located on the terminal rhamnose residue of the outer core region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号