首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA methylation patterns in genome are maintained during replication by a DNA methyltransferase Dnmt1. Mouse Dnmt1 is a 180 kDa protein comprising the N-terminal regulatory domain, which covers 2/3 of the molecule, and the rest C-terminal catalytic domain. In the present study, we demonstrated that the limited digestion of full-length Dnmt1 with different proteases produced a common N-terminal fragment, which migrated along with Dnmt1 (1-248) in SDS-polyacrylamide gel electrophoresis. Digestion of the N-terminal domains larger than Dnmt1 (1-248) with chymotrypsin again produced the fragment identical to the size of Dnmt1 (1-248). These results indicate that the N-terminal domain of 1-248 forms an independent domain. This N-terminal domain showed DNA binding activity, and the responsible sequence was narrowed to the 79 amino acid residues involving the proliferating cell nuclear antigen (PCNA) binding motif. The DNA binding activity did not distinguish between DNA methylated and non-methylated states, but preferred to bind to the minor groove of AT-rich sequence. The DNA binding activity of the N-terminal domain competed with the PCNA binding. We propose that DNA binding activity of the N-terminal domain contributes to the localization of Dnmt1 to AT-rich sequence such as Line 1, satellite, and the promoter of tissue-specific silent genes.  相似文献   

3.
Expression of lacZ gene fusions affects downstream transcription in yeast.   总被引:2,自引:0,他引:2  
C A Barnes  G C Johnston  R A Singer 《Gene》1991,104(1):47-54
  相似文献   

4.
5.
6.
7.
8.
9.
10.
Overexpression of the major DNA methyltransferase Dnmt1 is cytotoxic and has been hypothesized to result in aberrant hypermethylation of genes required for cell survival. Indeed, overexpression of mouse or human Dnmt1 in murine and human cell lines decreased clonogenicity. By frame-shift and deletion constructs, this effect of mouse Dnmt1 was localized at the N-terminal 124 amino acid domain, which mediates interaction with proliferating cell nuclear antigen (PCNA). Mutation of the PCNA-binding site restored normal cloning efficiencies. Overexpression of Dnmt3A or Dnmt3B, which do not interact with PCNA, yielded weaker effects on clonogenicity. Following introduction of the toxic domain, no significant effects on apoptosis, replication, or overall DNA methylation were observed for up to 3 d. Suppression of clonogenicity by Dnmt1 was also observed in cell lines lacking wild-type p53, p21(CIP1), or p16(INK4A). Suppression of clonogenicity by Dnmt1 overexpression may act as a fail-safe mechanism against carcinogenicity of sustained Dnmt1 overexpression.  相似文献   

11.
Dnmt1 is the predominant DNA methyltransferase (MTase) in mammals. The C-terminal domain of Dnmt1 clearly shares sequence similarity with many prokaryotic 5mC methyltransferases, and had been proposed to be sufficient for catalytic activity. We show here by deletion analysis that the C-terminal domain alone is not sufficient for methylating activity, but that a large part of the N-terminal domain is required in addition. Since this complex structure of Dnmt1 raises issues about its evolutionary origin, we have compared several eukaryotic MTases and have determined the genomic organization of the mouse Dnmt1 gene. The 5' most part of the N-terminal domain is dispensible for enzyme activity, includes the major nuclear import signal and comprises tissue-specific exons. Interestingly, the functional subdivision of Dnmt1 correlates well with the structure of the Dnmt1 gene in terms of intron/exon size distribution as well as sequence conservation. Our results, based on functional, structural and sequence comparison data, suggest that the gene has evolved from the fusion of at least three genes.  相似文献   

12.
13.
14.
DNA methylation plays an important role in gene silencing in mammals. Two de novo methyltransferases, Dnmt3a and Dnmt3b, are required for the establishment of genomic methylation patterns in development. However, little is known about their coordinate function in the silencing of genes critical for embryonic development and how their activity is regulated. Here we show that Dnmt3a and Dnmt3b are the major components of a native complex purified from embryonic stem cells. The two enzymes directly interact and mutually stimulate each other both in vitro and in vivo. The stimulatory effect is independent of the catalytic activity of the enzyme. In differentiating embryonic carcinoma or embryonic stem cells and mouse postimplantation embryos, they function synergistically to methylate the promoters of the Oct4 and Nanog genes. Inadequate methylation caused by ablating Dnmt3a and Dnmt3b is associated with dysregulated expression of Oct4 and Nanog during the differentiation of pluripotent cells and mouse embryonic development. These results suggest that Dnmt3a and Dnmt3b form a complex through direct contact in living cells and cooperate in the methylation of the promoters of Oct4 and Nanog during cell differentiation. The physical and functional interaction between Dnmt3a and Dnmt3b represents a novel regulatory mechanism to ensure the proper establishment of genomic methylation patterns for gene silencing in development.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号