首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A human homologue of Sar1, named Sara2, was shown to be preferentially expressed during erythropoiesis in a culture stimulated by EPO. Previous studies, in yeast, have shown that secretion-associated and Ras-related protein (Sar1p) plays an essential role in protein transport from the endoplasmic reticulum to the Golgi apparatus. Here, we report the molecular analysis of Sara2 in erythroid cell culture. A 1250 bp long cDNA, encoding a 198 amino-acid protein very similar to Sar1 proteins from other organisms, was obtained. Furthermore, we also report a functional study of Sara2 with Real-time quantitative PCR analysis, demonstrating that expression of Sara2 mRNA increases during the initial stages of erythroid differentiation with EPO and that a two-fold increase in expression occurs following the addition of hydroxyurea (HU). In K562 cells, Sara2 mRNA was observed to have a constant expression and the addition of HU also up-regulated the expression in these cells. Our results suggest that Sara2 is an important gene in processes involving proliferation and differentiation and could be valuable for understanding the vesicular transport system during erythropoiesis.  相似文献   

3.
Thyroid hormone stimulates erythropoietic differentiation. However, severe anemia is sometimes seen in patients with hyperthyroidism, and the mechanisms have not been fully elucidated. Bone marrow is comprised about 2–8 % oxygen, and the characteristics of hematopoietic stem cells have been shown to be influenced under hypoxia. Hypoxia-inducible factor-1 is a critical mediator of cellular responses to hypoxia and an important mediator in signal transduction of thyroid hormone [triiodothyronine (T3)]. The aim of this study was to investigate the effect of T3 on erythropoiesis under hypoxia mimicking physiological conditions in the bone marrow. We maintained human erythroleukemia K562 cells under hypoxic atmosphere (2 % O2) and examined their cellular characteristics. Compared to that under normal atmospheric conditions, cells under hypoxia showed a reduction in the proliferation rate and increase in the hemoglobin content or benzidine-positive rate, indicating promotion of erythroid differentiation. T3 had no effect on hypoxia-induced erythroid differentiation, but significantly inhibited activin A/erythroid differentiation factor-induced erythroid differentiation. Moreover, GATA2 mRNA expression was suppressed in association with erythroid differentiation, while T3 significantly diminished that suppression. These results suggest that T3 has a direct suppressive effect on erythroid differentiation under hypoxic conditions.  相似文献   

4.
UCP2, an inner membrane mitochondrial protein, has been implicated in bioenergetics and reactive oxygen species (ROS) modulation. High levels of UCP2 mRNA were recently found in erythroid cells where UCP2 is hypothesized to function as a facilitator of heme synthesis and iron metabolism by reducing ROS production. We examined UCP2 protein expression and role in mice erythropoiesis in vivo. UCP2 was mainly expressed at early stages of erythroid maturation when cells are not fully committed in heme synthesis. Iron incorporation into heme was unaltered in reticulocytes from UCP2-deficient mice. Although heme synthesis was not influenced by UCP2 deficiency, mice lacking UCP2 had a delayed recovery from chemically induced hemolytic anemia. Analysis of progenitor cells from bone marrow and fetal liver both in vitro and in vivo revealed that UCP2 deficiency results in a significant decrease in cell proliferation at the erythropoietin-dependent phase of erythropoiesis. This was accompanied by reduction in the phosphorylated form of ERK, a ROS-dependent cytosolic regulator of cell proliferation. Analysis of ROS in UCP2 null erythroid cells revealed altered distribution of ROS, resulting in decreased cytosolic and increased mitochondrial ROS. Restoration of the cytosol oxidative state of erythroid progenitor cells by the pro-oxidant Paraquat reversed the effect of UCP2 deficiency on cell proliferation in in vitro differentiation assays. Together, these results indicate that UCP2 is a regulator of erythropoiesis and suggests that inhibition of UCP2 function may contribute to the development of anemia.  相似文献   

5.
K562 cells can be used as a model of erythroid differentiation on being induced by hemin. We found that the level of annexin1 gene expression was notably increased during this indicated process. To test the hypothesis that annexin1 can regulate erythropoiesis, K562 cell clones in which annexin1 was stably increased and was knocked down by RNAi were established, respectively. With analysis by hemoglobin quantification, benzidine staining, and marker gene expression profile determination, we confirmed that hemin-induced erythroid differentiation of K562 cells was modestly stimulated by overexpression of annexin1 while it was significantly blocked by knock down of annexin1. Further studies revealed that the mechanisms of annexin1 regulation of the erythroid differentiation was partially related to the increased ERK phosphorylation and expression of p21(cip/waf), since specific inhibitor of MEK blocked the function of annexin1 in erythroid differentiation. We concluded that annexin1 exerted its erythropoiesis regulating effect by ERK pathway.  相似文献   

6.
7.

Background

Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1) deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.

Methodology/Principal Findings

We used a transplant model to induce stress conditions. In irradiated recipients that received hmox +/− or hmox +/+ bone marrow cells, we evaluated (i) the erythrocyte parameters in the peripheral blood; (ii) the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii) the patterns of histological iron staining; and (iv) the number of Mac-1+-cells expressing TNF-α. In the spleens of mice that received hmox +/− cells, we show (i) decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii) increases in the insoluble iron levels and decreases in the soluble iron levels; (iii) increased numbers of Mac-1+-cells expressing TNF-α; and (iv) decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.

Conclusions/Significance

As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.  相似文献   

8.
Growing evidence supports the role of erythroblastic islands (EI) as microenvironmental niches within bone marrow (BM), where cell-cell attachments are suggested as crucial for erythroid maturation. The inducible form of the enzyme heme oxygenase, HO-1, which conducts heme degradation, is absent in erythroblasts where hemoglobin (Hb) is synthesized. Yet, the central macrophage, which retains high HO-1 activity, might be suitable to take over degradation of extra, harmful, Hb heme. Of these enzymatic products, only the hydrophobic gas molecule - CO can transfer from the macrophage to surrounding erythroblasts directly via their tightly attached membranes in the terminal differentiation stage.Based on the above, the study hypothesized CO to have a role in erythroid maturation. Thus, the effect of CO gas as a potential erythroid differentiation inducer on the common model for erythroid progenitors, K562 cells, was explored. Cells were kept under oxygen lacking environment to mimic BM conditions. Nitrogen anaerobic atmosphere (N2A) served as control for CO atmosphere (COA). Under both atmospheres cells proliferation ceased: in N2A due to cell death, while in COA as a result of erythroid differentiation. Maturation was evaluated by increased glycophorin A expression and Hb concentration. Addition of 1%CO only to N2A, was adequate for maintaining cell viability. Yet, the average Hb concentration was low as compared to COA. This was validated to be the outcome of diversified maturation stages of the progenitor''s population.In fact, the above scenario mimics the in vivo EI conditions, where at any given moment only a minute portion of the progenitors proceeds into terminal differentiation. Hence, this model might provide a basis for further molecular investigations of the EI structure/function relationship.  相似文献   

9.
10.
Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type-specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34(+) haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl(2) induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions.  相似文献   

11.
Critical functions of the immune system are maintained by the ability of myeloid progenitors to differentiate and mature into macrophages. We hypothesized that the cytoprotective gas molecule carbon monoxide (CO), generated endogenously by heme oxygenases (HO), promotes differentiation of progenitors into functional macrophages. Deletion of HO-1, specifically in the myeloid lineage (Lyz-Cre:Hmox1flfl), attenuated the ability of myeloid progenitors to differentiate toward macrophages and decreased the expression of macrophage markers, CD14 and macrophage colony-stimulating factor receptor (MCSFR). We showed that HO-1 and CO induced CD14 expression and efficiently increased expansion and differentiation of myeloid cells into macrophages. Further, CO sensitized myeloid cells to treatment with MCSF at low doses by increasing MCSFR expression, mediated partially through a PI3K-Akt-dependent mechanism. Exposure of mice to CO in a model of marginal bone marrow transplantation significantly improved donor myeloid cell engraftment efficiency, expansion and differentiation, which corresponded to increased serum levels of GM-CSF, IL-1α and MCP-1. Collectively, we conclude that HO-1 and CO in part are critical for myeloid cell differentiation. CO may prove to be a novel therapeutic agent to improve functional recovery of bone marrow cells in patients undergoing irradiation, chemotherapy and/or bone marrow transplantation.  相似文献   

12.
13.
14.
In China, the traditional Chinese medicine “YiSui ShenXu Granule” has been used for treating β-thalassemia over 20 years and known to be effective in clinic. Several purified components from “YiSui ShenXu Granule” are tested in K562 cells to reveal its effect on globin expression and erythroid differentiation, and one of the purified components, emodin, was demonstrated to increase the expression of α-, ε-, γ-globin, CD235a, and CD71 in K562 cells. Moreover, the increase of their expression is emodin concentration-dependent. The mRNA and microRNA (miRNA) expression profiles are further analyzed and 417 mRNAs and 35 miRNAs with differential expression between untreated and emodin-treated K562 cells were identified. Among them, two mRNAs that encode known positive regulators of erythropoiesis, ALAS2, and c-KIT respectively, increased during emodin-induced K562 erythroid differentiation, meanwhile, two negative regulators, miR-221 and miR-222, decreased during this process. These results indicate that emodin can improve the expression of globin genes in K562 cells and also induce K562 cells to erythroid differentiation possibly through up-regulating ALAS2 and c-KIT and down-regulating miR-221 and miR-222.  相似文献   

15.
The dynamics of erythropoiesis during the bone restoration and under the conditions of perturbing influence: fracture and hemolytic anemia have been studied in the experiment. It is found that under the conditions of callus formation the process of proliferation and differentiation of red cells in the bone marrow is inhibited. The observed effect of erythropoiesis inhibition may be caused by the intercellular interaction of regenerating tissues in their "struggle" for microphages, which, while being the centre of the erythroid insula secure the maturation of erythroid precursors, and at the same time they can take part in the bone formation process.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号