首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.  相似文献   

2.
Chromosome ends in Saccharomyces cerevisiae are positioned in clusters at the nuclear rim. We report that Ctf18, Ctf8, and Dcc1, the subunits of a Replication Factor C (RFC)-like complex, are essential for the perinuclear positioning of telomeres. In both yeast and mammalian cells, peripheral nuclear positioning of chromatin during G1 phase correlates with late DNA replication. We find that the mislocalized telomeres of ctf18 cells still replicate late, showing that late DNA replication does not require peripheral positioning during G1. The Ku and Sir complexes have been shown to act through separate pathways to position telomeres, but in the absence of Ctf18 neither pathway can act fully to maintain telomere position. Surprisingly CTF18 is not required for Ku or Sir4-mediated peripheral tethering of a nontelomeric chromosome locus. Our results suggest that the Ctf18 RFC-like complex modifies telomeric chromatin to make it competent for normal localization to the nuclear periphery.  相似文献   

3.
Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the ‘alternative clamp loader’ known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved ‘Pol ϵ binding module’ in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint.  相似文献   

4.
Sister chromatid cohesion is established during S phase near the replication fork. However, how DNA replication is coordinated with chromosomal cohesion pathway is largely unknown. Here, we report studies of fission yeast Ctf18, a subunit of the RFC(Ctf18) replication factor C complex, and Chl1, a putative DNA helicase. We show that RFC(Ctf18) is essential in the absence of the Swi1-Swi3 replication fork protection complex required for the S phase stress response. Loss of Ctf18 leads to an increased sensitivity to S phase stressing agents, a decreased level of Cds1 kinase activity, and accumulation of DNA damage during S phase. Ctf18 associates with chromatin during S phase, and it is required for the proper resumption of replication after fork arrest. We also show that chl1Delta is synthetically lethal with ctf18Delta and that a dosage increase of chl1(+) rescues sensitivities of swi1Delta to S phase stressing agents, indicating that Chl1 is involved in the S phase stress response. Finally, we demonstrate that inactivation of Ctf18, Chl1, or Swi1-Swi3 leads to defective centromere cohesion, suggesting the role of these proteins in chromosome segregation. We propose that RFC(Ctf18) and the Swi1-Swi3 complex function in separate and redundant pathways essential for replication fork stabilization to facilitate sister chromatid cohesion in fission yeast.  相似文献   

5.
Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability--expansions, contractions, and fragility--with effect over a wide range of allele lengths from 20-155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair.  相似文献   

6.
Ctf4p (chromosome transmission fidelity) has been reported to function in DNA metabolism and sister chromatid cohesion in Saccharomyces cerevisiae. In this study, a ctf4S143F mutant was isolated from a yeast genetic screen to identify replication-initiation proteins. The ctf4S143F mutant exhibits plasmid maintenance defects which can be suppressed by the addition of multiple origins to the plasmid, like other known replication-initiation mutants. We show that both ctf4S143F and ctf4Δ strains have defects in S phase entry and S phase progression at the restrictive temperature of 38 °C. Ctf4p localizes in the nucleus throughout the cell cycle but only starts to bind chromatin at the G1/S transition and then disassociates from chromatin after DNA replication. Furthermore, Ctf4p interacts with Mcm10p physically and genetically, and the chromatin association of Ctf4p depends on Mcm10p. Finally, deletion of CTF4 destabilizes Mcm10p and Pol α in both mcm10-1 and MCM10 cells. These data indicate that Ctf4p facilitates Mcm10p to promote the DNA replication.  相似文献   

7.
We have identified and characterized an alternative RFC complex RFC(Ctf18p, Ctf8p, Dcc1p) that is required for sister chromatid cohesion and faithful chromosome transmission. Ctf18p, Ctf8p, and Dcc1p interact physically in a complex with Rfc2p, Rfc3p, Rfc4p, and Rfc5p but not with Rfc1p or Rad24p. Deletion of CTF18, CTF8, or DCC1 singly or in combination (ctf18Deltactf8Deltadcc1Delta) leads to sensitivity to microtubule depolymerizing drugs and a severe sister chromatid cohesion defect. Furthermore, temperature-sensitive mutations in RFC4 result in precocious sister chromatid separation. Our results highlight a novel function of the RFC proteins and support a model in which sister chromatid cohesion is established at the replication fork via a polymerase switching mechanism and a replication-coupled remodeling of chromatin.  相似文献   

8.
Fission yeast checkpoint protein Rad17 is required for the DNA integrity checkpoint responses. A fraction of Rad17 is chromatin bound independent of the other checkpoint proteins throughout the cell cycle. Here we show that in response to DNA damage induced by either methyl methanesulfonate treatment or ionizing radiation, increased levels of Rad17 bind to chromatin. Following S-phase stall induced by hydroxyurea or a cdc22 mutation, the chromatin-bound Rad17 progressively dissociates from the chromatin. After S-phase arrest by hydroxyurea in cds1Delta or rad3Delta cells or by replication mutants, Rad17 remains chromatin bound. Rad17 is able to complex in vivo with an Rfc small subunit, Rfc2, but not with Rfc1. Furthermore, cells with rfc1Delta are checkpoint proficient, suggesting that Rfc1 does not have a role in checkpoint function. A checkpoint-defective mutant protein, Rad17(K118E), which has similar nuclear localization to that of the wild type, is unable to bind ATP and has reduced ability in chromatin binding. Mutant Rad17(K118E) protein also has reduced ability to complex with Rfc2, suggesting that Lys(118) of Rad17 plays a role in Rad17-Rfc small-subunit complex formation and chromatin association. However, in the rad17.K118E mutant cells, Cds1 can be activated by hydroxyurea. Together, these results suggest that Rad17 binds to chromatin in response to an aberrant genomic structure generated from DNA damage, replication mutant arrest, or hydroxyurea arrest in the absence of Cds1. Rad17 is not required to bind chromatin when genomic structures are protected by hydroxyurea-activated Cds1. The possible checkpoint events induced by chromatin-bound Rad17 are discussed.  相似文献   

9.
Replication factor C complexes load and unload processivity clamps from DNA and are involved in multiple DNA replication and repair pathways. The RFCCtf18 variant complex is required for activation of the intra‐S‐phase checkpoint at stalled replication forks and aids the establishment of sister chromatid cohesion. Unlike other RFC complexes, RFCCtf18 contains two non‐Rfc subunits, Dcc1 and Ctf8. Here, we present the crystal structure of the Dcc1‐Ctf8 heterodimer bound to the C‐terminus of Ctf18. We find that the C‐terminus of Dcc1 contains three‐winged helix domains, which bind to both ssDNA and dsDNA. We further show that these domains are required for full recruitment of the complex to chromatin, and correct activation of the replication checkpoint. These findings provide the first structural data on a eukaryotic seven‐subunit clamp loader and define a new biochemical activity for Dcc1.  相似文献   

10.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

11.
The eukaryotic replisome is a crucial determinant of genome stability, but its structure is still poorly understood. We found previously that many regulatory proteins assemble around the MCM2‐7 helicase at yeast replication forks to form the replisome progression complex (RPC), which might link MCM2‐7 to other replisome components. Here, we show that the RPC associates with DNA polymerase α that primes each Okazaki fragment during lagging strand synthesis. Our data indicate that a complex of the GINS and Ctf4 components of the RPC is crucial to couple MCM2‐7 to DNA polymerase α. Others have found recently that the Mrc1 subunit of RPCs binds DNA polymerase epsilon, which synthesises the leading strand at DNA replication forks. We show that cells lacking both Ctf4 and Mrc1 experience chronic activation of the DNA damage checkpoint during chromosome replication and do not complete the cell cycle. These findings indicate that coupling MCM2‐7 to replicative polymerases is an important feature of the regulation of chromosome replication in eukaryotes, and highlight a key role for Ctf4 in this process.  相似文献   

12.
The S phase checkpoint pathway preserves genome stability by protecting defective DNA replication forks, but the underlying mechanisms are still understood poorly. Previous work with budding yeast suggested that the checkpoint kinases Mec1 and Rad53 might prevent collapse of the replisome when nucleotide concentrations are limiting, thereby allowing the subsequent resumption of DNA synthesis. Here we describe a direct analysis of replisome stability in budding yeast cells lacking checkpoint kinases, together with a high-resolution view of replisome progression across the genome. Surprisingly, we find that the replisome is stably associated with DNA replication forks following replication stress in the absence of Mec1 or Rad53. A component of the replicative DNA helicase is phosphorylated within the replisome in a Mec1-dependent manner upon replication stress, and our data indicate that checkpoint kinases control replisome function rather than stability, as part of a multifaceted response that allows cells to survive defects in chromosome replication.  相似文献   

13.
Viability of cell progeny upon cell division require that genomes are replicated, repaired, and maintained with high fidelity. Central to both DNA replication and repair are Replication Factor C (RFC) complexes which catalyze the unloading/loading of sliding clamps such as PCNA or 9-1-1 complexes on DNA. Budding yeast contain four alternate RFC complexes which play partially redundant roles. Rfc1, Ctf18, Rad24, and Elg1 are all large subunits that bind, in a mutually exclusive fashion to RFC 2-5 small subunits. Ctf18, Rad24, and Elg1 are of particular interest because, in addition to their roles in maintaining genome integrity, all three play critical roles in sister chromatid tethering reactions that appear coupled to their roles in DNA replication/repair. Intriguingly, the nuclear envelope protein Mps3 similarly exhibits roles in repair and cohesion, leading us to hypothesize that Mps3 and RFCs function through a singular mechanism. Here we report that the nuclear envelope protein Mps3 physically associates with all three of these large RFC complex subunits (Ctf18, Elg1, and Rad24). In addition we report a physical interaction between Mps3 and the histone variant Htz1, a factor previously shown to promote DNA repair. In combination, these findings reveal a direct link between the nuclear envelope and chromatin and provide support for a model that telomeres and chromatin interact with the nuclear envelope during both DNA repair and sister chromatid pairing reactions.  相似文献   

14.
Ctf8p is a component of Ctf18-RFC, an alternative replication factor C-like complex required for efficient sister chromatid cohesion in Saccharomyces cerevisiae. We performed synthetic genetic array (SGA) analysis with a ctf8 deletion strain as a primary screen to identify other nonessential genes required for efficient sister chromatid cohesion. We then assessed proficiency of cohesion at three chromosomal loci in strains containing deletions of the genes identified in the ctf8 SGA screen. Deletion of seven genes (CHL1, CSM3, BIM1, KAR3, TOF1, CTF4, and VIK1) resulted in defective sister chromatid cohesion. Mass spectrometric analysis of immunoprecipitated complexes identified a physical association between Kar3p and Vik1p and an interaction between Csm3p and Tof1p that we confirmed by coimmunoprecipitation from cell extracts. These data indicate that synthetic genetic array analysis coupled with specific secondary screens can effectively identify protein complexes functionally related to a reference gene. Furthermore, we find that genes involved in mitotic spindle integrity and positioning have a previously unrecognized role in sister chromatid cohesion.  相似文献   

15.
A genetic synthetic dosage lethality (SDL) screen using CTF13 encoding a known kinetochore protein as the overexpressed reference gene identified two chromosome transmission fidelity (ctf) mutants, YCTF58 and YCTF26. These mutant strains carry independent alleles of a novel gene, which we have designated CTF19. In light of its potential role in kinetochore function, we have cloned and characterized the CTF19 gene in detail. CTF19 encodes a nonessential 369-amino acid protein. ctf19 mutant strains display a severe chromosome missegregation phenotype, are hypersensitive to benomyl, and accumulate at G2/M in cycling cells. CTF19 genetically interacts with kinetochore structural mutants and mitotic checkpoint mutants. In addition, ctf19 mutants show a defect in the ability of centromeres on minichromosomes to bind microtubules in an in vitro assay. In vivo cross-linking and chromatin immunoprecipitation demonstrates that Ctf19p specifically interacts with CEN DNA. Furthermore, Ctf19-HAp localizes to the nuclear face of the spindle pole body and genetically interacts with a spindle-associated protein. We propose that Ctf19p is part of a macromolecular kinetochore complex, which may function as a link between the kinetochore and the mitotic spindle.  相似文献   

16.
DNA replication in eukaryotic cells is tightly regulated to ensure faithful inheritance of the genetic material. While the replicators, replication origins and many replication-initiation proteins in Saccharomyces cerevisiae have been identified and extensively studied, the detailed mechanism that controls the initiation of DNA replication is still not well understood. It is likely that some factors involved in or regulating the initiation of DNA replication have not been discovered. To identify novel DNA replication-initiation proteins and their regulators, we developed a sensitive and comprehensive phenotypic screen by combining several established genetic strategies including plasmid loss assays with plasmids containing a single versus multiple replication origins and colony color sectoring assays. We isolated dozen of mutants in previously known initiation proteins and identified several novel factors, including Ctf1p Ctf3p, Ctf4p, Ctf18p, Adk1p and Cdc60p, whose mutants lose plasmid containing a single replication origin at high rates but lose plasmid carrying multiple replication origins at lower rates. We also show that overexpression of replication initiation proteins causes synthetic dosage lethality or growth defects in ctf1 and ctf18 mutants and that Ctf1p and Ctf18p physically interact with ORC, Cdt1p and MCM proteins. Furthermore, depletion of both Ctf1p and Ctf18p prevents S phase entry, retards S phase progression, and reduces pre-RC formation during the M-to-G1 transition. These data suggest that Ctf1p and Ctf18p together play important roles in regulating the initiation of DNA replication.  相似文献   

17.
CTF7/ECO1 is an essential yeast gene required for the establishment of sister chromatid cohesion. The findings that CTF7/ECO1, POL30 (PCNA), and CHL12/CTF18 (a replication factor C [RFC] homolog) genetically interact provided the first evidence that the processes of cohesion establishment and DNA replication are intimately coupled-a link now confirmed by other studies. To date, however, it is unknown how Ctf7p/Eco1p function is coupled to DNA replication or whether Ctf7p/Eco1p physically associates with any components of the DNA replication machinery. Here, we report that Ctf7p/Eco1p associates with proteins that perform partially redundant functions in DNA replication. Chl12p/Ctf18p combines with Rfc2p to Rfc5p to form one of three independent RFC complexes. By chromatographic methods, Ctf7p/Eco1p was found to associate with Chl12/Ctf18p and with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. The association between Ctf7p/Eco1p and this RFC complex is biologically relevant in that (i) Ctf7p/Eco1p cosediments with Chl12p/Ctf18p in vivo and (ii) rfc5-1 mutant cells exhibit precocious sister separation. Previous studies revealed that Rfc1p or Rad24p associates with Rfc2p to Rfc5p to form two other RFC complexes independent of Ctf18p-RFC complexes. These Rfc1p-RFC and Rad24p-RFC complexes function in DNA replication or repair and DNA damage checkpoint pathways. Importantly, Ctf7p/Eco1p also associates with Rfc1p and Rad24p, suggesting that these RFC complexes also play critical roles in cohesion establishment. The associations between Ctf7p/Eco1p and RFC subunits provide novel evidence regarding the physical linkage between cohesion establishment and DNA replication. Furthermore, the association of Ctf7p/Eco1p with each of three RFC complexes supplies new insights into the functional redundancy of RFC complexes in cohesion establishment.  相似文献   

18.
Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for their alignment on the spindle apparatus and segregation in mitosis. Budding yeast cohesin first associates with chromosomes in G1. Then, during DNA replication in S-phase, the replication fork-associated acetyltransferase Eco1 acetylates the cohesin subunit Smc3 to make cohesin’s DNA binding resistant to destabilization by the Wapl protein. Whether stabilization of cohesin molecules that happen to link sister chromatids is sufficient to build sister chromatid cohesion, or whether additional reactions are required to establish these links, is not known. In addition to Eco1, several other factors contribute to cohesion establishment, including Ctf4, Ctf18, Tof1, Csm3, Chl1 and Mrc1, but little is known about their roles. Here, we show that each of these factors facilitates cohesin acetylation. Moreover, the absence of Ctf4 and Chl1, but not of the other factors, causes a synthetic growth defect in cells lacking Eco1. Distinct from acetylation defects, sister chromatid cohesion in ctf4Δ and chl1Δ cells is not improved by removing Wapl. Unlike previously thought, we do not find evidence for a role of Ctf4 and Chl1 in Okazaki fragment processing, or of Okazaki fragment processing in sister chromatid cohesion. Thus, Ctf4 and Chl1 delineate an additional acetylation-independent pathway that might hold important clues as to the mechanism of sister chromatid cohesion establishment.  相似文献   

19.
Hermand D  Nurse P 《Molecular cell》2007,26(4):553-563
DNA replication is initiated by recruitment of Cdc18 to origins. During S phase, CDK-dependent destruction of Cdc18 occurs. We show that when DNA replication stalls, Cdc18 persists in a chromatin-bound complex including the checkpoint kinases Rad3 and Rad26. Rad26 directly binds Cdc18 and is required for Rad3 recruitment to chromatin. Depletion of Cdc18 when DNA replication is stalled leads to release of Rad3 and Rad26 from chromatin and entry into an aberrant mitosis even though replication intermediates can still be detected. These findings indicate that Cdc18 plays a pivotal role in checkpoint maintenance by anchoring the Rad3-Rad26 complex to chromatin. Cdc18 persistence during DNA-replication arrest requires the S phase checkpoint that inhibits the S phase CDK. We propose that S phase arrest activates the S phase checkpoint blocking mitosis onset and inhibiting Cdc18 degradation, and that the stabilized Cdc18, in turn, anchors Rad3 to chromatin to ensure long-term checkpoint maintenance.  相似文献   

20.
Sister chromatid pairing reactions, termed cohesion establishment, occur during S-phase and appear to be regulated by Replication Factor C (RFC) complexes. For instance, RFCs that contain Ctf18p exhibit pro-establishment activities while those that contain Elg1p exhibit anti-establishment activities. It remains unknown whether Ctf18p-RFC and Elg1p-RFC functions are simply opposing or instead reveal complicated and non-parallel regulatory mechanisms. To better understand the nature of these novel pathways, we analyzed the small RFC subunit Rfc5p that is common to both Ctf18p-RFC and Elg1p-RFC. Despite this commonality, the data show that diminished Rfc5p function rescues ctf7/eco1 mutant cell phenotypes, revealing that Rfc5p promotes anti-establishment activities. This rescue is specific to establishment pathways in that rfc5-1 greatly accentuates growth defects when expressed in scc2 (deposition), mcd1/scc1 or smc3 (cohesion maintenance) mutated cells. Our results reveal for the first time a role for small RFC subunits in directing RFC complex functions - in this case towards anti-establishment pathways. We further report that Pds5p exhibits both establishment and anti-establishment functions in cohesion. This duality suggests that categorizations of establishment and anti-establishment activities require further examination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号