首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The murine visceral endoderm is an extraembryonic cell layer that appears prior to gastrulation and performs critical functions during embryogenesis. The traditional role ascribed to the visceral endoderm entails nutrient uptake and transport. Besides synthesizing a number of specialized proteins that facilitate uptake, digestion, and secretion of nutrients, the extraembryonic visceral endoderm coordinates blood cell differentiation and vessel formation in the adjoining mesoderm, thereby facilitating efficient exchange of nutrients and gases between the mother and embryo. Recent studies suggest that in addition to this nutrient exchange function the visceral endoderm overlying the egg cylinder stage embryo plays an active role in guiding early development. Cells in the anterior visceral endoderm function as an early organizer. Prior to formation of the primitive streak, these cells express specific gene products that specify the fate of underlying embryonic tissues. In this review we highlight recent investigations demonstrating this dual role for visceral endoderm as a provider of both nutrients and developmental cues for the early embryo.  相似文献   

2.
Trigeminal sensory innervation of the cornea is critical for protection and synthesis of neuropeptides required for normal vision. Little is known about axon guidance during mammalian corneal innervation. In contrast to the chick where a pericorneal nerve ring forms via Npn/Sema signaling, mouse corneal axons project directly into the presumptive cornea without initial formation of an analogous nerve ring. Here we show that during development of the mouse cornea, Npn1 is strongly expressed by the trigeminal ganglion whereas Npn2 is expressed at low levels. At the same time Sema3A and Sema3F are expressed in distinct patterns in the ocular tissues. Npn1(sema-/-) mutant corneas become precociously and aberrantly innervated by nerve bundles that project further into the corneal stroma. In contrast, stromal innervation was not affected in Npn2(-/-) mutants. The corneal epithelium was prematurely innervated in both Npn1(sema-/-) and Npn2(-/-) mutants. These defects were exacerbated in Npn1(sema-/-);Npn2(-/-) double mutants, which in addition showed ectopic innervation of the region between the optic cup and lens vesicle. Collectively, our data show that Sema3A/Npn1 and Sema3F/Npn2 signaling play distinct roles and both are required for proper innervation of the mouse cornea.  相似文献   

3.
4.
Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self-generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self-assembly process and several distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus-independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal-mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.  相似文献   

5.
6.
7.
Hox genes encode homeodomain-containing proteins that control embryonic development in multiple contexts. Up to 30 Hox genes, distributed among all four clusters, are expressed during mammalian kidney morphogenesis, but functional redundancy between them has made a detailed functional account difficult to achieve. We have investigated the role of the HoxD cluster through comparative molecular embryological analysis of a set of mouse strains carrying targeted genomic rearrangements such as deletions, duplications, and inversions. This analysis allowed us to uncover and genetically dissect the complex role of the HoxD cluster. Regulation of metanephric mesenchyme-ureteric bud interactions and maintenance of structural integrity of tubular epithelia are differentially controlled by some Hoxd genes during renal development, consistent with their specific expression profiles. We also provide evidence for a kidney-specific form of colinearity that underlies the differential expression of two distinct sets of genes located on both sides and overlapping at the Hoxd9 locus. These insights further our knowledge of the genetic control of kidney morphogenesis and may contribute to understanding certain congenital kidney malformations, including polycystic kidney disease and renal hypoplasia.  相似文献   

8.
Vg1, a member of the TGF-β superfamily of ligands, has been implicated in the induction of mesoderm, formation of primitive streak, and left-right patterning in Xenopus and chick embryos. In mice, GDF1 and GDF3 - two TGF-β superfamily ligands that share high sequence identity with Vg1 - have been shown to independently mimic distinct aspects of Vg1's functions. However, the extent to which the developmental processes controlled by GDF1 and GDF3 and the underlying signaling mechanisms are evolutionarily conserved remains unclear. Here we show that phylogenetic and genomic analyses indicate that Gdf1 is the true Vg1 ortholog in mammals. In addition, and similar to GDF1, we find that GDF3 signaling can be mediated by the type I receptor ALK4, type II receptors ActRIIA and ActRIIB, and the co-receptor Cripto to activate Smad-dependent reporter genes. When expressed in heterologous cells, the native forms of either GDF1 or GDF3 were incapable of inducing downstream signaling. This could be circumvented by using chimeric constructs carrying heterologous prodomains, or by co-expression with the Furin pro-protein convertase, indicating poor processing of the native GDF1 and GDF3 precursors. Unexpectedly, co-expression with Nodal - another TGF-β superfamily ligand involved in mesoderm formation - could also expose the activities of native GDF1 and GDF3, suggesting a potentially novel mode of cooperation between these ligands. Functional complementarity between GDF1 and GDF3 during embryonic development was investigated by analyzing genetic interactions between their corresponding genes. This analysis showed that Gdf1−/−;Gdf3−/− compound mutants are more severely affected than either Gdf1−/− or Gdf3−/− single mutants, with defects in the formation of anterior visceral endoderm and mesoderm that recapitulate Vg1 loss of function, suggesting that GDF1 and GDF3 together represent the functional mammalian homologs of Vg1.  相似文献   

9.
10.
Kang J  Bronson RT  Xu Y 《The EMBO journal》2002,21(6):1447-1455
Nijmegen breakage syndrome (NBS) is an autosomal recessive hereditary disease that shares some common defects with ataxia-telangiectasia. The gene product mutated in NBS, named NBS1, is a component of the Mre11 complex that is involved in DNA strand-break repair. To elucidate the physiological roles of NBS1, we disrupted the N-terminal exons of the NBS1 gene in mice. NBS1(m/m) mice are viable, growth retarded and hypersensitive to ionizing radiation (IR). NBS1(m/m) mice exhibit multiple lymphoid developmental defects, and rapidly develop thymic lymphoma. In addition, female NBS1(m/m) mice are sterile due to oogenesis failure. NBS1(m/m) cells are impaired in cellular responses to IR and defective in cellular proliferation. Most systematic and cellular defects identified in NBS1(m/m) mice recapitulate those in NBS patients, and are essentially identical to those observed in Atm(-/-) mice. In contrast to Atm(-/-) mice, spermatogenesis is normal in NBS1(m/m) mice, indicating that distinct roles of ATM have differential requirement for NBS1 activity. Thus, NBS1 and ATM have overlapping and distinct functions in animal development and DNA repair.  相似文献   

11.
CSF-1, the major regulator of macrophage (Mphi) development, has three biologically active isoforms: a membrane-spanning, cell surface glycoprotein, a secreted glycoprotein, and a secreted proteoglycan. We hypothesized that there are shared and unique roles of individual CSF-1 isoforms during renal inflammation. To test this, we evaluated transgenic mice only expressing the cell surface or precursors of the secreted CSF-1 isoforms for Mphi accumulation, activation, and Mphi-mediated tubular epithelial cell (TEC) apoptosis during unilateral ureteral obstruction. The only difference between secreted proteoglycan and secreted glycoprotein CSF-1 isoforms is the presence (proteoglycan) or absence (glycoprotein) of an 18-kDa chondroitin sulfate glycosaminoglycan. We report that 1) cell surface CSF-1 isoform is sufficient to restore Mphi accumulation, activation, and TEC apoptosis to wild-type levels and is substantially more effective than the secreted CSF-1 isoforms; 2) the chondroitin sulfate glycosaminoglycan facilitates Mphi accumulation, activation, and TEC apoptosis; 3) increasing the level of secreted proteoglycan CSF-1 in serum amplifies renal inflammation; and 4) cell-cell contact is required for Mphi to up-regulate CSF-1-dependent expression of IFN-gamma. Taken together, we have identified central roles for the cell surface CSF-1 and the chondroitin sulfate chain on secreted proteoglycan CSF-1 during renal inflammation.  相似文献   

12.
The synapsins are a family of neuron-specific proteins, associated with the cytoplasmic surface of synaptic vesicles, which have been shown to regulate neurotransmitter release in mature synapses and to accelerate development of the nervous system. Using neuronal cultures from mice lacking synapsin I, synapsin II, or both synapsins I and II, we have now found that synapsin I and synapsin II play distinct roles in neuronal development. Deletion of synapsin II, but not synapsin I, greatly retarded axon formation. Conversely, deletion of synapsin I, but not synapsin II, greatly retarded synapse formation. Remarkably, the deletion of both synapsins led to partial restoration of the wild phenotype. The results suggest that the synapsins play separate but coordinated developmental roles.  相似文献   

13.
Histone methylation acts as an epigenetic regulator of chromatin activity through the modification of arginine and lysine residues on histones H3 and H4. In the case of lysine, this includes the formation of mono-, di-, or trimethyl groups, each of which is presumed to represent a distinct functional state at the cellular level. To examine the potential developmental roles of these modifications, we determined the global patterns of lysine methylation involving K9 on histone H3 and K20 on histone H4 in midgestation mouse embryos. For each lysine target site, we observed distinct subnuclear distributions of the mono- and trimethyl versions in 10T1/2 cells that were conserved within primary cultures and within the 3D-tissue architecture of the embryo. Interestingly, three of these modifications, histone H3 trimethyl K9, histone H4 monomethyl K20, and histone H4 trimethyl K20 exhibited marked differences in their distribution within the neuroepithelium. Specifically, both histone H3 trimethyl K9 and H4 monomethyl K20 were elevated in proliferating cells of the neural tube, which in the case of the K9 modification was limited to mitotic cells on the luminal surface. In contrast, histone H4 trimethyl K20 was progressively lost from these medial regions and became enriched in differentiating neurons in the ventrolateral neural tube. The inverse relationship of histone H4 K20 methyl derivatives is even more striking during skeletal and cardiac myogenesis where the accumulation of the trimethyl modification in pericentromeric heterochromatin suggests a role in gene silencing in postmitotic muscle cells. Importantly, our results establish that histone lysine methylation occurs in a highly dynamic manner that is consistent with their function in an epigenetic program for cell division and differentiation.  相似文献   

14.
Mitogen-activated protein kinases ERK1 and ERK2 have been implicated in various pathophysiological events of the CNS,but their specific roles in cell processes under physiologic and pathological condit...  相似文献   

15.
Distinct roles for the two cGATA-1 finger domains.   总被引:7,自引:0,他引:7       下载免费PDF全文
  相似文献   

16.
Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1–H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1–H2B histone dimer. Nap1 (nucleosome assembly protein 1) can bind (H3–H4)2 tetramers, H2A–H2B dimers and Htz1–H2B dimers. Nap1 can bind H2A–H2B dimer in the cytoplasm and shuttles the dimer into the nucleus. Moreover, Nap1 functions in nucleosome assembly by competitively interacting with non-nucleosomal histone–DNA. However, the exact roles of these chaperones in assembling Htz1-containing nucleosome remain largely unknown. In this paper, we revealed that Chz1 does not show a physical interaction with chromatin. In contrast, Nap1 binds exactly at the genomic DNA that contains Htz1. Nap1 and Htz1 show a preferential interaction with AG-rich DNA sequences. Deletion of chz1 results in a significantly decreased binding of Htz1 in chromatin, whereas deletion of nap1 dramatically increases the association of Htz1 with chromatin. Furthermore, genome-wide nucleosome-mapping analysis revealed that nucleosome occupancy for Htz1p-bound genes decreases upon deleting htz1 or chz1, suggesting that Htz1 is required for nucleosome structure at the specific genome loci. All together, these results define the distinct roles for histone chaperones Chz1 and Nap1 to regulate Htz1 incorporation into chromatin.  相似文献   

17.
Despite its evolutionary conservation and functional importance, little is known of the signaling pathways that underlie development of the hypothalamus. Although mutations affecting Nodal and Hedgehog signaling disrupt hypothalamic development, the time and site of action and the exact roles of these pathways remain very poorly understood. Unexpectedly, we show here that cell-autonomous reception of Nodal signals is neither required for the migration of hypothalamic precursors within the neural plate, nor for further development of the anterior-dorsal hypothalamus. Nodal signaling is, however, cell-autonomously required for establishment of the posterior-ventral hypothalamus. Conversely, Hedgehog signaling antagonizes the development of posterior-ventral hypothalamus, while promoting anterior-dorsal hypothalamic fates. Besides their distinct roles in the regionalization of the diencephalon, we reveal cooperation between Nodal and Hedgehog pathways in the maintenance of the anterior-dorsal hypothalamus. Finally we show that it is the prechordal plate and not the head endoderm that provides the early signals essential for establishment of the hypothalamus.  相似文献   

18.
The telomere is a functional chromatin structure that consists of G-rich repetitive sequences and various associated proteins. Telomeres protect chromosomal ends from degradation, provide escape from the DNA damage response, and regulate telomere lengthening by telomerase. Multiple proteins that localize at telomeres form a complex called shelterin/telosome. One component, TRF1, is a double-stranded telomeric DNA binding protein. Inactivation of TRF1 disrupts telomeric localization of other shelterin components and induces chromosomal instability. Here, we examined how the telomeric localization of shelterin components is crucial for TRF1-mediated telomere-associated functions. We found that many of the mTRF1 deficient phenotypes, including chromosomal instability, growth defects, and dysfunctional telomere damage response, were suppressed by the telomere localization of shelterin components in the absence of functional mTRF1. However, abnormal telomere signals and telomere elongation phenotypes were either not rescued or only partially rescued, respectively. These data suggest that TRF1 regulates telomere length and function by at least two mechanisms; in one TRF1 acts through the recruiting/tethering of other shelterin components to telomeres, and in the other TRF1 seems to play a more direct role.  相似文献   

19.
Distinct roles of IL-1 and IL-6 in human T cell activation   总被引:7,自引:0,他引:7  
We have examined the mechanisms underlying the activation of human T cells by IL-1 and IL-6. We report that PHA-stimulated accessory cell-depleted tonsillar T cells fractionated on the basis of their density show a high degree of heterogeneity in their proliferative response to these cytokines, inasmuch as small dense lymphocytes essentially fail to respond whereas large cells proliferate extensively. This differential response could be ascribed to the fact that only the large cells produced IL-2 under these circumstances, thus providing unequivocal evidence for the existence of an IL-2-mediated step in the activation of human T cells by IL-1 and IL-6. The synergy between IL-1 and IL-6 was found to result from their complementary effects on the production of and response to IL-2, with IL-1 playing a preponderant role in the induction of IL-2, and IL-6 being required, in addition to IL-1, for optimal IL-2-responsiveness. Using small tonsillar T cells, it was possible to show that, concomitant with the enhanced response to IL-2, IL-6 induced a marked increase in cell size and in protein synthesis. In the absence of other factors, this activation was not followed by entry into S phase, suggesting that the essential role of IL-6 in T cell activation is to induce the cells to move from G0 to G1, where they become more responsive to the small amounts of IL-2 induced by IL-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号