首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The E6 protein of the high-risk human papillomaviruses (HPVs) and the cellular ubiquitin-protein ligase E6AP form a complex which causes the ubiquitination and degradation of p53. We show here that HPV16 E6 promotes the ubiquitination and degradation of E6AP itself. The half-life of E6AP is shorter in HPV-positive cervical cancer cells than in HPV-negative cervical cancer cells, and E6AP is stabilized in HPV-positive cancer cells when expression of the viral oncoproteins is repressed. Expression of HPV16 E6 in cells results in a threefold decrease in the half-life of transfected E6AP. E6-mediated degradation of E6AP requires (i) the binding of E6 to E6AP, (ii) the catalytic activity of E6AP, and (iii) activity of the 26S proteasome, suggesting that E6-E6AP interaction results in E6AP self-ubiquitination and degradation. In addition, both in vitro and in vivo experiments indicate that E6AP self-ubiquitination results primarily from an intramolecular transfer of ubiquitin from the active-site cysteine to one or more lysine residues; however, intermolecular transfer can also occur in the context of an E6-mediated E6AP multimer. Finally, we demonstrate that an E6 mutant that is able to immortalize human mammary epithelial cells but is unable to degrade p53 retains its ability to bind and degrade E6AP, raising the possibility that E6-mediated degradation of E6AP contributes to its ability to transform mammalian cells.  相似文献   

2.

Background

Human Papillomavirus (HPV) E6 induced p53 degradation is thought to be an essential activity by which high-risk human Alphapapillomaviruses (alpha-HPVs) contribute to cervical cancer development. However, most of our understanding is derived from the comparison of HPV16 and HPV11. These two viruses are relatively distinct viruses, making the extrapolation of these results difficult. In the present study, we expand the tested strains (types) to include members of all known HPV species groups within the Alphapapillomavirus genus.

Principal Findings

We report the biochemical activity of E6 proteins from 27 HPV types representing all alpha-HPV species groups to degrade p53 in human cells. Expression of E6 from all HPV types epidemiologically classified as group 1 carcinogens significantly reduced p53 levels. However, several types not associated with cancer (e.g., HPV53, HPV70 and HPV71) were equally active in degrading p53. HPV types within species groups alpha 5, 6, 7, 9 and 11 share a most recent common ancestor (MRCA) and all contain E6 ORFs that degrade p53. A unique exception, HPV71 E6 ORF that degraded p53 was outside this clade and is one of the most prevalent HPV types infecting the cervix in a population-based study of 10,000 women. Alignment of E6 ORFs identified an amino acid site that was highly correlated with the biochemical ability to degrade p53. Alteration of this amino acid in HPV71 E6 abrogated its ability to degrade p53, while alteration of this site in HPV71-related HPV90 and HPV106 E6s enhanced their capacity to degrade p53.

Conclusions

These data suggest that the alpha-HPV E6 proteins'' ability to degrade p53 is an evolved phenotype inherited from a most recent common ancestor of the high-risk species that does not always segregate with carcinogenicity. In addition, we identified an amino-acid residue strongly correlated with viral p53 degrading potential.  相似文献   

3.
The viral oncoprotein E6 is an essential factor for cervical cancers induced by "high-risk" mucosal HPV. Among other oncogenic activities, E6 recruits the ubiquitin ligase E6AP to promote the ubiquitination and subsequent proteasomal degradation of p53. E6 is prone to self-association, which long precluded its structural analysis. Here we found that E6 specifically dimerizes through its N-terminal domain and that disruption of the dimer interface strongly increases E6 solubility. This allowed us to raise structural data covering the entire HPV16 E6 protein, including the high-resolution NMR structures of the two zinc-binding domains of E6 and a robust data-driven model structure of the N-terminal domain homodimer. Interestingly, homodimer interface mutations that disrupt E6 self-association also inactivate E6-mediated p53 degradation. These data suggest that E6 needs to self-associate via its N-terminal domain to promote the polyubiquitination of p53 by E6AP.  相似文献   

4.
Ro HS  Koh BH  Jung SO  Park HK  Shin YB  Kim MG  Chung BH 《Proteomics》2006,6(7):2108-2111
We have developed a surface plasmon resonance (SPR)-based protein microarray to study protein-protein interactions in a high-throughput mode. As a model system, triple protein interactions have been explored with human papillomaviral E6 protein, tumor suppressor p53, and ubiquitin ligase E6AP. Human papillomavirus (HPV) is known to be a causative agent of cervical cancer. Upon infection, the viral E6 protein forms a heterotrimeric protein complex with p53 and E6AP. The formation of the complex eventually results in the degradation of p53. In the present study, a GST-fused E6AP protein was layered onto a glutathione (GSH)-modified gold chip surface. The specific binding of GST-E6AP protein onto the gold chip surface was facilitated through the affinity of GST to its specific ligand GSH. The interacting proteins (E6 and/or p53) were then spotted. Detection of the interaction was performed using a SPR imaging (SPRI) technique. The resulting SPRI intensity data showed that the protein-protein interactions of E6AP, E6, and p53 were detected in a concentration-dependent manner, suggesting that the SPRI-based microarray system can be an effective tool to study protein-protein interactions where multiple proteins are involved.  相似文献   

5.
《Biophysical journal》2022,121(9):1704-1714
In epithelial tumors, oncoprotein E6 binds with the ubiquitin ligase E6AP to form E6/E6AP heterodimer; then this heterodimer recruits p53 to form E6/E6AP/p53 heterotrimer and induces p53 degradation. Recent experiments demonstrated that three E6 single-site mutants (F47R, R102A, and L50E) can inhibit the E6/E6AP/p53 heterotrimer formation and rescue p53 from the degradation pathway. However, the molecular mechanism underlying mutation-induced heterotrimer inhibition remains largely elusive. Herein, we performed extensive molecular dynamics simulations (totally ~13 μs) on both heterodimer and heterotrimer to elucidate at an atomic level how each p53-degradation-defective HPV16 E6 mutant reduces the structural stabilities of the two complexes. Our simulations reveal that the three E6 mutations destabilize the structure of E6/E6AP/p53 complex through distinct mechanisms. Although F47RE6 mutation has no effect on the structure of E6/E6AP heterodimer, it results in an electrostatic repulsion between R47E6 and R290p53, which is unfavorable for E6-p53 binding. R102AE6 mutation destabilizes the structure of E6/E6AP heterodimer and significantly disrupts hydrophobic and cation-π interactions between F47E6 and E286p53/L298p53/R290p53. L50EE6 mutation impairs both E6 interdomain interactions (especially F47-K108 cation-π interaction) and E6-E6AP intermolecular interactions important for the stabilization of E6/E6AP heterodimer. This study identifies the intra- and intermolecular interactions crucial for the complex stability, which may provide mechanistic insights into the inhibition of complex formation by the three HPV16 E6 mutations.  相似文献   

6.
The high-risk human papillomavirus (HPV) E6 proteins stimulate the ubiquitination and degradation of p53, dependent on the E6AP ubiquitin-protein ligase. Other proteins have also been shown to be targeted for degradation by E6, including hDlg, the human homolog of the Drosophila melanogaster Discs large (Dlg) tumor suppressor. We show here that the human homolog of the Drosophila Scribble (Vartul) (hScrib) tumor suppressor protein is also targeted for ubiquitination by the E6-E6AP complex in vitro and that expression of E6 induces degradation of hScrib in vivo. Characterization of the E6AP-E6-hScrib complex indicated that hScrib binds directly to E6 and that the binding is mediated by the PDZ domains of hScrib and a carboxyl-terminal epitope conserved among the high-risk HPV E6 proteins. Green fluorescent protein-hScrib was localized to the periphery of MDCK cells, where it colocalized with ZO-1, a component of tight junctions. E6 expression resulted in loss of integrity of tight junctions, as measured by ZO-1 localization, and this effect was dependent on the PDZ binding epitope of E6. Thus, the high-risk HPV E6 proteins induce the degradation of the human homologs of two Drosophila PDZ domain-containing tumor suppressor proteins, hDlg and hScrib, both of which are associated with cell junction complexes. The fact that Scrib/Vart and Dlg appear to cooperate in a pathway that controls Drosophila epithelial cell growth suggests that the combined targeting of hScrib and hDlg is an important component of the biologic activity of high-risk HPV E6 proteins.  相似文献   

7.
The p53 tumor suppressor is regulated by the MDM2 oncoprotein through a negative feedback mechanism. MDM2 promotes the ubiquitination and proteasome-dependent degradation of p53, possibly by acting as a ubiquitin ligase. In cervical cancer cells containing high-risk human papillomaviruses (HPV), p53 is also targeted for degradation by the HPV E6 oncoprotein in combination with the cellular E6-AP ubiquitin ligase. In this report, we describe the identification of efficient antisense oligonucleotides against human E6-AP. The roles of MDM2 and E6-AP in p53 regulation were investigated using a novel E6-AP antisense oligonucleotide and a previously characterized MDM2 antisense oligonucleotide. In HPV16-positive and HPV-18 positive cervical cancer cells, inhibition of E6-AP, but not MDM2, expression results in significant induction of p53. In HPV-negative tumor cells, p53 is activated by inhibition of MDM2 but not E6-AP. Furthermore, treatment with both E6-AP and MDM2 antisense oligonucleotides in HPV-positive cells does not lead to further induction of p53 over inhibition of E6-AP alone. Therefore, E6-AP-mediated degradation is dominant over MDM2 in cervical cancer cells but does not have a significant role in HPV-negative cells.  相似文献   

8.
The human papilloma virus E6-associated protein (E6AP) functions as a ubiquitin protein ligase (E3) in the E6-mediated ubiquitination of p53. E6AP is also an E3 in the absence of E6, but its normal cellular substrates have not yet been identified. Here we report the identification of HHR23A, one of the human homologues of the yeast DNA repair protein Rad23, as an E6-independent target of E6AP. HHR23A binds E6AP and is ubiquitinated in vitro in an E6AP-dependent manner. Ubiquitinated forms of endogenous HHR23A are detectable in mammalian cells. Overexpression of wild-type E6AP in vivo enhances the ubiquitination of HHR23A, whereas a dominant negative E6AP mutant inhibits HHR23A ubiquitination. Although HHR23A is a stable protein in non-synchronized cells, its levels are regulated in a cell cycle-dependent manner, with specific degradation occurring during S phase. The S phase degradation of HHR23A could be blocked in vivo by dominant negative E6AP, providing direct evidence for the involvement of E6AP in the regulation of HHR23A. Consistent with a role of the HHR23 proteins in DNA repair, UV-induced DNA damage inhibited HHR23A degradation. Although the precise role of HHR23 proteins in DNA repair and cell cycle progression remains to be elucidated, our data suggest that E6AP-mediated ubiquitination of HHR23A may have important implications in DNA repair and cell cycle progression.  相似文献   

9.
10.
11.
12.
E6-AP is a 100-kDa cellular protein that mediates the interaction of the human papillomavirus type 16 and 18 E6 proteins with p53. The association of p53 with E6 and E6-AP promotes the specific ubiquitination and subsequent proteolytic degradation of p53 in vitro. We recently isolated a cDNA encoding E6-AP and have now mapped functional domains of E6-AP involved in binding E6, association with p53, and ubiquitination of p53. The E6 binding domain consists of an 18-amino-acid region within the central portion of the molecule. Deletion of these 18 amino acids from E6-AP results in loss of both E6 and p53 binding activities. The region that directs p53 binding spans the E6 binding domain and consists of approximately 500 amino acids. E6-AP sequences in addition to those required for formation of a stable ternary complex with E6 and p53 are necessary to stimulate the ubiquitination of p53. These sequences lie within the C-terminal 84 amino acids of E6-AP. The entire region required for E6-dependent ubiquitination of p53 is also required for the ubiquitination of an artificial E6 fusion protein.  相似文献   

13.
Chew KC  Matsuda N  Saisho K  Lim GG  Chai C  Tan HM  Tanaka K  Lim KL 《PloS one》2011,6(5):e19720

Background

Mutations in the parkin gene, which encodes a ubiquitin ligase (E3), are a major cause of autosomal recessive parkinsonism. Although parkin-mediated ubiquitination was initially linked to protein degradation, accumulating evidence suggests that the enzyme is capable of catalyzing multiple forms of ubiquitin modifications including monoubiquitination, K48- and K63-linked polyubiquitination. In this study, we sought to understand how a single enzyme could exhibit such multifunctional catalytic properties.

Methods and Findings

By means of in vitro ubiquitination assays coupled with mass spectrometry analysis, we were surprised to find that parkin is apparently capable of mediating E2-independent protein ubiquitination in vitro, an unprecedented activity exhibited by an E3 member. Interestingly, whereas full length parkin catalyzes solely monoubiquitination regardless of the presence or absence of E2, a truncated parkin mutant containing only the catalytic moiety supports both E2-independent and E2-dependent assembly of ubiquitin chains.

Conclusions

Our results here suggest a complex regulation of parkin''s activity and may help to explain how a single enzyme like parkin could mediate diverse forms of ubiquitination.  相似文献   

14.

Background

Human papillomavirus (HPV), especially HPV16, is associated with the development of both cervical and tonsillar cancer and intratype variants in the amino acid sequence of the HPV16 E6 oncoprotein have been demonstrated to be associated with viral persistence and cancer lesions. For this reason the presence of HPV16 E6 variants in tonsillar squamous cell carcinoma (TSCC) in cervical cancer (CC), as well as in cervical samples (CS), were explored.

Methods

HPV16 E6 was sequenced in 108 TSCC and 52 CC samples from patients diagnosed 2000–2008 in the County of Stockholm, and in 51 CS from young women attending a youth health center in Stockholm.

Results

The rare E6 variant R10G was relatively frequent (19%) in TSCC, absent in CC and infrequent (4%) in CS, while the well-known L83V variant was common in TSCC (40%), CC (31%), and CS (29%). The difference for R10G was significant between TSCC and CC (p = 0.0003), as well as between TSCC and CS (p = 0.009). The HPV16 European phylogenetic lineage and its derivatives dominated in all samples (>90%).

Conclusion

The relatively high frequency of the R10G variant in TSCC, as compared to what has been found in CC both in the present study as well as in several other studies in different countries, may indicate a difference between TSCC and CC with regard to tumor induction and development. Alternatively, there could be differences with regard to the oral and cervical prevalence of this variant that need to be explored further.  相似文献   

15.
Oncoprotein E6 is essential for oncogenesis induced by human papillomaviruses (HPVs). The solution structure of HPV16-E6 C-terminal domain reveals a zinc binding fold. A model of full-length E6 is proposed and analyzed in the context of HPV evolution. E6 appears as a chameleon protein combining a conserved structural scaffold with highly variable surfaces participating in generic or specialized HPV functions. We investigated surface residues involved in two specialized activities of high-risk genital HPV E6: p53 tumor suppressor degradation and nucleic acid binding. Screening of E6 surface mutants identified an in vivo p53 degradation-defective mutant that fails to recruit p53 to ubiquitin ligase E6AP and restores high p53 levels in cervical carcinoma cells by competing with endogeneous E6. We also mapped the nucleic acid binding surface of E6, the positive potential of which correlates with genital oncogenicity. E6 structure-function analysis provides new clues for understanding and counteracting the complex pathways of HPV-mediated pathogenesis.  相似文献   

16.

Background

Malignant gliomas represent one group of tumors that poorly respond to ionizing radiation (IR) alone or combined with chemotherapeutic agents because of the intrinsic or acquired resistance. In this study, TIP-1 was identified as one novel protein that confers resistance of glioma cells to IR.

Methodology/Principal Findings

Meta-analysis indicated that high TIP-1 expression levels correlate with the poor prognosis of human malignant gliomas after radiotherapy. Studies with established human glioma cell lines demonstrated that TIP-1 depletion with specific shRNAs sensitized the cells to IR, whereas an ectopic expression of TIP-1 protected the glioma cells from the IR-induced DNA damage and cell death. Biochemical studies indicated that TIP-1 protein promoted p53 ubiquitination and resulted in a reduced p53 protein level. Furthermore, p53 and its ubiquitination are required for the TIP-1 regulated cellular response to IR. A yeast two-hybrid screening identified that TIP-1, through its single PDZ domain, binds to the carboxyl terminus of LZAP that has been studied as one tumor suppressor functioning through ARF binding and p53 activation. It was revealed that the presence of TIP-1 enhances the protein association between LZAP and ARF and modulates the functionality of ARF/HDM2 toward multi-ubiquitination of p53, while depleting TIP-1 rescued p53 from polyubiquitination and degradation in the irradiated glioma cells. Studies with a mouse xenograft model indicated that depleting TIP-1 within D54 cells improved the tumor growth control with IR.

Conclusions/Significance

This study provided the first evidence showing that TIP-1 modulates p53 protein stability and is involved in the radioresistance of malignant gliomas, suggesting that antagonizing TIP-1 might be one novel approach to sensitize malignant gliomas to radiotherapy.  相似文献   

17.
Numerous reports have raised the level of national concern that chemicals found in the environment may have adverse effects on the health of humans and wildlife. Environmental exposure to pollutants, such as dioxin, has been implicated in gonadal tumor formation in Maine softshell clams (Mya arenaria). Prevalence of these tumors is as high as 40% in some populations. Although their etiology is still unknown, investigations into the mechanisms of tumor formation have revolved around a hypothesis of dioxin-induced toxicity. The aryl hydrocarbon receptor (AHR) was initially investigated, but was later determined to not bind the prototypical ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), suggesting that dioxin toxicity is mediated through an AHR-independent pathway. An alternative mechanism of tumor formation has been investigated, involving a protein with significant sequence similarity to mammalian E6AP, a HECT (homologous to E6AP carboxy terminus) E3 ubiquitin-protein ligase. E6AP, in association with the high-risk human papillomavirus (HPV) E6 protein, is involved in the abnormal degradation of the p53 tumor suppressor protein in human cervical cancer. Tumorigenic clam reproductive tissue revealed higher M. arenaria E3 (MaE3) protein levels concomitant with lower M. arenaria p53 (Map53) levels. While the function of MaE3 as a HECT E3 was verified, results from three methods agree that MaE3 does not associate with Map53. However, alteration in Map53 levels may still play a role in clam gonadal tumorigenesis. Due to upregulation of MaE3 in neoplastic reproductive tissue, further investigations will focus on determining the proteolytic targets of MaE3. In conjunction with our previous findings that dioxin toxicity in the softshell clam is not mediated by AHR, the results from our current investigation suggest a complex etiology for the clam germinomas.  相似文献   

18.
Differences in the ubiquitination of p53 by Mdm2 and the HPV protein E6   总被引:5,自引:0,他引:5  
Camus S  Higgins M  Lane DP  Lain S 《FEBS letters》2003,536(1-3):220-224
The human papillomavirus (HPV) protein E6 can promote the ubiquitination of the p53 tumour suppressor in vitro, providing an explanation for the ability of E6 to induce p53 degradation in vivo and contribute to the potential tumorigenic effect of the virus. Instead, in non-infected cells, p53 levels are primarily destabilised by the ubiquitin E3 ligase activity of the Mdm2 protein. Here we have compared the effects of E6 and Mdm2 on p53 ubiquitination in vivo. We show that whereas in the presence of Mdm2 proteasome inhibitors induce the accumulation of ubiquitinated forms of p53, this does not occur in the presence of E6. Accordingly, we confirm that the effect of E6 and p53 is independent of the six C-terminal lysine residues in p53, which have previously been described to play an important role for effective ubiquitination and degradation of 53 mediated by Mdm2. We also show that other yet unidentified residues in p53 are also susceptible to ubiquitination. These results indicate that E6 does not induce ubiquitination of p53 in the same way as Mdm2 in order to promote its degradation, suggesting important differences between the Mdm2 and E6 effects on p53 degradation.  相似文献   

19.
.HECT类泛素连接酶对p53家族的调控作用   总被引:1,自引:1,他引:0  
p53家族成员在细胞生长、组织发育及肿瘤形成等方面都具有十分重要的生物学功能,其自身受到严格调控,泛素化修饰就是其中非常重要的方式之一,作为泛素化过程中决定底物特异性的泛素连接酶E3作用则更加突出.泛素连接酶E3可以分为两类:RING(really interesting new gene)类和HECT(homologous to E6AP C-terminus)类E3近年来,HECT类E3对p53家族的调控效应不断得到揭示.本文综述了HECT类E3在调控p53家族转录活性、稳定 性方面的重要作用、分子机制以及其作用对生物体肿瘤形成和生长发育等产生的影响,为进 一步完善p53家族调控网络,揭示HECT类E3在肿瘤发生发展及防治中的作用提供参考.  相似文献   

20.
The attachment and spreading of keratinocyte cells result from interactions between integrins and immobilized extracellular matrix molecules. Human papillomavirus type 16 (HPV-16) E6 augmented the kinetics of cell spreading, while E6 genes from HPV-11 or bovine papillomavirus type 1 did not. The ability of E6 to interact with the E6AP ubiquitin ligase and target p53 degradation was required to augment cell-spreading kinetics; dominant negative p53 alleles also enhanced the kinetics of cell spreading and the level of attachment of cells to hydrophobic surfaces. The targeted degradation of p53 by E6 may contribute to the invasive phenotype exhibited by cervical cells that contain high-risk HPV types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号