首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochromes b561 (Cyts b561) are ubiquitous membrane proteins catalyzing ascorbate-mediated trans-membrane electron transfer. A heterologous expression system in Saccharomyces cerevisiae was developed to study their structure-function relationship. Recombinant mouse chromaffin granule Cyt b561 (CGCytb) shows spectral characteristics, ascorbate reducibility, and redox potentials identical to that of the native bovine protein. Moreover, the reconstituted recombinant protein mediated trans-membrane electron transport with kinetic characteristics similar to that of bovine CGCytb. Site-directed mutant analysis supports the presence of two hemes coordinated by the highly conserved His pairs H52/H120 and H86/H159. Reduction of CGCytb by ascorbate showed biphasic kinetics (Kd1: 0.016 +/- 0.005 mM, Kd2: 1.24 +/- 0.19 mM). Mutation of a well-conserved Arg residue (R72) abolished high affinity CGCytb reduction by ascorbate, indicating that this residue may be critical for substrate binding. On the other hand, mutation of a Lys previously suggested to play a role in ascorbate binding (K83), did not affect the ascorbate-mediated reduction of the protein.  相似文献   

2.
Griesen D  Su D  Bérczi A  Asard H 《Plant physiology》2004,134(2):726-734
As a free radical scavenger, and cofactor, ascorbate (ASC) is a key player in the regulation of cellular redox processes. It is involved in responses to biotic and abiotic stresses and in the control of enzyme activities and metabolic reactions. Cytochromes (Cyts) b561 catalyze ASC-driven trans-membrane electron transport and contribute to ASC-mediated redox reactions in subcellular compartments. Putative Cyts b561 have been identified in Arabidopsis (ecotype Columbia) on the basis of sequence similarity to their mammalian counterparts. However, little is known about the function or subcellular localization of this unique class of membrane proteins. We have expressed one of the putative Arabidopsis Cyt b561 genes (CYBASC1) in yeast and we demonstrate that this protein encodes an ASC-reducible b-type Cyt with absorbance characteristics similar to that of other members of this family. Several lines of independent evidence demonstrate that CYBASC1 is localized at the plant tonoplast (TO). Isoform-specific antibodies against CYBASC1 indicate that this protein cosediments with the TO marker on sucrose gradients. Moreover, CYBASC1 is strongly enriched in TO-enriched membrane fractions, and TO fractions contain an ASC-reducible b-type Cyt with alpha-band absorbance maximum near 561 nm. The TO ASC-reducible Cyt has a high specific activity, suggesting that it is a major constituent of this membrane. These results provide evidence for the presence of trans-membrane redox components in this membrane type, and they suggest the coupling of cytoplasmic and vacuolar metabolic reactions through ASC-mediated redox activity.  相似文献   

3.
Molecular evidence for the role of a ferric reductase in iron transport   总被引:1,自引:0,他引:1  
Duodenal cytochrome b (Dcytb) is a haem protein similar to the cytochrome b561 protein family. Dcytb is highly expressed in duodenal brush-border membrane and is implicated in dietary iron absorption by reducing dietary ferric iron to the ferrous form for transport via Nramp2/DCT1 (divalent-cation transporter 1)/DMT1 (divalent metal-transporter 1). The protein is expressed in other tissues and may account for ferric reductase activity at other sites in the body.  相似文献   

4.
Duodenal cytochrome b (Dcytb or Cybrd1) is an iron-regulated protein, highly expressed in the duodenal brush border membrane. It has ferric reductase activity and is believed to play a physiological role in dietary iron absorption. Its sequence identifies it as a member of the cytochrome b(561) family. A His-tagged construct of human Dcytb was expressed in insect Sf9 cells and purified. Yields of protein were increased by supplementation of the cells with 5-aminolevulinic acid to stimulate heme biosynthesis. Quantitative analysis of the recombinant Dcytb indicated two heme groups per monomer. Site-directed mutagenesis of any of the four conserved histidine residues (His 50, 86, 120 and 159) to alanine resulted in much diminished levels of heme in the purified Dcytb, while mutation of the non-conserved histidine 33 had no effect on the heme content. This indicates that those conserved histidines are heme ligands, and that the protein cannot stably bind heme if any of them is absent. Recombinant Dcytb was reduced by ascorbate under anaerobic conditions, the extent of reduction being 67% of that produced by dithionite. It was readily reoxidized by ferricyanide. EPR spectroscopy showed signals from low-spin ferriheme, consistent with bis-histidine coordination. These comprised a signal at gmax=3.7 corresponding to a highly anisotropic species, and another at gmax=3.18; these species are similar to those observed in other cytochromes of the b561 family, and were reducible by ascorbate. In addition another signal was observed in some preparations at gmax=2.95, but this was unreactive with ascorbate. Redox titrations indicated an average midpoint potential for the hemes in Dcytb of +80 mV+/-30 mV; the data are consistent with either two hemes at the same potential, or differing in potential by up to 60 mV. These results indicate that Dcytb is similar to the ascorbate-reducible cytochrome b561 of the adrenal chromaffin granule, though with some differences in midpoint potentials of the hemes.  相似文献   

5.
Human erythrocytes contain an unidentified plasma membrane redox system that can reduce extracellular monodehydroascorbate by using intracellular ascorbate (Asc) as an electron donor. Here we show that human erythrocyte membranes contain a cytochrome b(561) (Cyt b(561)) and hypothesize that it may be responsible for this activity. Of three evolutionarily closely related Cyts b(561), immunoblots of human erythrocyte membranes showed only the duodenal cytochrome b(561) (DCytb) isoform. DCytb was also found in guinea pig erythrocyte membranes but not in erythrocyte membranes from the mouse or rat. Mouse erythrocytes lost a majority of the DCytb in the late erythroblast stage during erythropoiesis. Absorption spectroscopy showed that human erythrocyte membranes contain an Asc-reducible b-type Cyt having the same spectral characteristics as recombinant DCytb and biphasic reduction kinetics, similar to those of the chromaffin granule Cyt b(561). In contrast, mouse erythrocytes did not exhibit Asc-reducible b-type Cyt activity. Furthermore, in contrast to mouse erythrocytes, human erythrocytes much more effectively preserved extracellular Asc and transferred electrons from intracellular Asc to extracellular ferricyanide. These results suggest that the DCytb present in human erythrocytes may contribute to their ability to reduce extracellular monodehydroascorbate.  相似文献   

6.
7.
The regional and tissue-specific expression of the Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, were examined. The Mr 65,000 alpha-polypeptide of CaM kinase-Gr is expressed ubiquitously in different anatomical regions of rat brain, whereas an additional Mr 67,000 beta-polypeptide is observed solely in the cerebellum. The alpha-polypeptide appears in the neonatal rat forebrain and cerebellum, whereas the beta-polypeptide appears by the second postnatal week and may reflect cerebellar granule cell differentiation. Most peripheral tissues do not express either CaM kinase-Gr polypeptide. However, rat thymus and thymocytes derived therefrom express CaM kinase-Gr at levels comparable to those of the central nervous system. The identity of the enzyme in rat thymus was corroborated by immunoblot assays, Northern blots, and direct enzyme purification. Rat spleen and testis also produce CaM kinase-Gr, but at lower levels than either thymus or brain. These observations demonstrate selective regional and developmental expression of CaM kinase-Gr polypeptide in brain, and suggest that it may participate in Ca2+ signalling in cells derived both from the immune system as well as the central nervous system.  相似文献   

8.
Xu J  Ji C  Wang L  Cao Y  Dai J  Ye X  Zeng L  Dai J  Wu Q  Xie Y  Mao Y 《Molecular biology reports》2003,30(1):47-52
We report here cloning and characterization of a novel human gene, termed C5orf12, which is a putative membrane protein belonging to the TMS_TDE family. The cDNA encodes 42 animo acid with a putative molecular weight of about 47 KDa. Secondary structure prediction showed that C5orf12 contained 10 putative transmembrane helices, which has high identity with other family members. We performed RT-PCR to examine its expression pattern. The result showed that C5orf12 was highly expressed in placenta, skeletal muscle, spleen, thymus, testis and peripheral leukocyte while expressed weakly in heart and liver. C5orf12 has high identity with the rat TPO1, so we speculate that C5orf12 may also have a role in the brain development.  相似文献   

9.
Recent studies of mutant mice with compromised ability to absorb dietary iron have identified involvement of two integral membrane proteins in the intestinal epithelial lining in iron uptake, a divalent metal ion transporter and a ferric reductase. The current study concerns the recombinant expression, purification, and initial spectroscopic characterization of a recombinant form of the human ferric reductase that was expressed and purified as the apoprotein from Escherichia coli. Reconstitution of the recombinant protein with ferriprotoporphyrin IX produced a red product with Soret (Fe3+, lambdamax 413.5 nm; Fe2+, lambdamax = 426 nm) and visible absorption maxima indicative of bisimidazole axial coordination. This observation was confirmed by electron paramagnetic resonance and magnetic circular dichroism spectroscopy. Titration of apo-Dcytb with ferriprotoporphyrin IX was consistent with the binding of two heme groups to the protein as predicted by the phylogenetic relationship of this protein to the cytochrome b561 family. Similar titrations and spectroscopic studies of two double variants of Dcytb, each lacking a pair of histidyl residues (H50 and H120 or H86 and H159) proposed on the basis of sequence alignment with other members of the cytochrome b561 family to provide axial ligands to bound heme, indicated that these variants were able to bind just one heme group each.  相似文献   

10.
Duodenal cytochrome b (Dcytb or Cybrd1) is an iron-regulated protein, highly expressed in the duodenal brush border membrane. It has ferric reductase activity and is believed to play a physiological role in dietary iron absorption. Its sequence identifies it as a member of the cytochrome b561 family. A His-tagged construct of human Dcytb was expressed in insect Sf9 cells and purified. Yields of protein were increased by supplementation of the cells with 5-aminolevulinic acid to stimulate heme biosynthesis. Quantitative analysis of the recombinant Dcytb indicated two heme groups per monomer. Site-directed mutagenesis of any of the four conserved histidine residues (His 50, 86, 120 and 159) to alanine resulted in much diminished levels of heme in the purified Dcytb, while mutation of the non-conserved histidine 33 had no effect on the heme content. This indicates that those conserved histidines are heme ligands, and that the protein cannot stably bind heme if any of them is absent. Recombinant Dcytb was reduced by ascorbate under anaerobic conditions, the extent of reduction being 67% of that produced by dithionite. It was readily reoxidized by ferricyanide. EPR spectroscopy showed signals from low-spin ferriheme, consistent with bis-histidine coordination. These comprised a signal at gmax = 3.7 corresponding to a highly anisotropic species, and another at gmax = 3.18; these species are similar to those observed in other cytochromes of the b561 family, and were reducible by ascorbate. In addition another signal was observed in some preparations at gmax = 2.95, but this was unreactive with ascorbate. Redox titrations indicated an average midpoint potential for the hemes in Dcytb of + 80 mV ± 30 mV; the data are consistent with either two hemes at the same potential, or differing in potential by up to 60 mV. These results indicate that Dcytb is similar to the ascorbate-reducible cytochrome b561 of the adrenal chromaffin granule, though with some differences in midpoint potentials of the hemes.  相似文献   

11.
It was reported that a hamster protein, called "oscillin," with a sequence related to that of an Escherichia coli GNPDA triggered Ca(2+) oscillations in mammalian oocytes when introduced into their cytoplasm upon fertilization. Recently, it was shown that GNPDA/oscillin is ubiquitously expressed in rat tissues and that a recombinant hamster GNPDA/oscillin protein does not exhibit oscillin activity when injected into oocytes. In the mouse, the nature and role of such a GNPDA/oscillin is not known, but another candidate protein, tr-kit, has been proposed as a sperm factor causing oocyte activation. In order to clarify this issue, we have characterized the mouse homolog of hamster and human GNPDA/oscillin, and examined its expression along with that of tr-kit, in parallel. We report here the molecular cloning and sequencing of mouse GNPDA/oscillin, which shows over 96% identity with the hamster and human homologs. Using specific primers, we performed an RT-PCR analysis to determine the tissue distribution of mouse GNPDA/oscillin mRNA. Unlike tr-kit mRNA which is expressed solely in mouse testis, GNPDA/oscillin mRNA is detected in unfertilized oocytes and in all tissues examined including testis, heart, thymus, liver, ovary, uterus, kidney, spleen, and lung. The protein itself is also detected in all tissues examined by Western blots. Indirect immunofluorescence studies, using an antibody raised against hamster GNPDA, demonstrate that GNPDA is lost with the acrosome reaction of mouse spermatozoa, is localized in the equatorial and neck regions of the human spermatozoa and the post-acrosomal region of the hamster spermatozoa. Our results thus indicate that mouse GNPDA/oscillin, the homolog of hamster oscillin, unlike tr-kit, does not exhibit some of the required characteristics expected from a putative sperm-derived oocyte-activating factor.  相似文献   

12.
Human duodenal cytochrome b (Dcytb) is a transmembrane hemoprotein found in the duodenal brush border membrane and in erythrocytes. Dcytb has been linked to uptake of dietary iron and to ascorbate recycling in erythrocytes. Detailed biophysical and biochemical characterization of Dcytb has been limited by difficulties in expressing sufficient amounts of functional recombinant protein in yeast and insect cell systems. We have developed an Escherichia coli Rosetta-gami B(DE3) cell system for production of recombinant His-tagged human Dcytb with a yield of ~26 mg of purified, ascorbate-reducible cytochrome per liter of culture. The recombinant protein is readily solubilized with n-dodecyl-β-D-maltoside and purified to electrophoretic homogeneity by one-step chromatography on cobalt affinity resin. The purified recombinant Dcytb has a heme to protein ratio very close to the theoretical value of 2 and retains functional reactivity with ascorbate, as assessed by spectroscopic and kinetic measurements. Ascorbate showed a marked kinetic selectivity for the high-potential heme center over the low-potential heme center in purified Dcytb. This new E. coli expression system for Dcytb offers ~7-fold improvement in yield and other substantial advantages over existing expression systems for reliable production of functional Dcytb at levels suitable for biochemical, biophysical and structural characterization.  相似文献   

13.
We have examined the transport of amino acids by the sodium-dependent "A" and "ASC" system in thymic- and splenic-derived lymphocytes from the Long-Evans rat. Lymphocytes derived from the thymus transport amino acids by both the "A" and "ASC" systems, whereas lymphocytes from the spleen transport amino acids by the "ASC" system only. Thymic lymphocytes are capable of establishing a steady state distribution ratio of 7.9 for 2-aminoisobutyric acid, but splenic lymphocytes can attain only 3.5. The steady state distribution ratio of alanine was the same in both cell types. Sodium-independent transport is also different in splenic and thymic lymphocytes. But both cells move amino acids by a Na+-independent system for mediated exchange-diffusion. The studies show that lymphocytes derived from the spleen and thymus transport amino acids differently, and that the "T" lymphocytes from the spleen have membrane transport systems different from "T" lymphocytes from the thymus.  相似文献   

14.
15.
In a screen for RNA-binding proteins expressed during murine spermatogenesis, we have identified a cDNA that encodes a protein of 911 amino acids that contains two copies of the double-stranded RNA-binding motif and has 80% identity with human Interleukin Enhancer Binding Factor 3 (ILF3). Linkage and cytogenetic analyses localized the Ilf3 cDNA to a portion of mouse Chr 9, which shows conserved synteny with a region of human Chr 19 where the human ILF3 gene had been previously localized, supporting that we had cloned the murine homolog of ILF3. Northern analysis indicated the Ilf3 gene is ubiquitously expressed in mouse adult tissues with high levels of expression in the brain, thymus, testis, and ovary. Polyclonal antibodies detected multiple protein species in a subset of the tissues expressing Ilf3 RNA. Immunoreactive species are present at high levels in the thymus, testis, ovary, and the spleen to a lesser extent. The high degree of sequence similarity between the mouse ILF3 protein and other dsRNA binding motif-containing proteins suggests a role in RNA metabolism, while the differential expression indicates the mouse ILF3 protein predominantly functions in tissues containing developing lymphocyte and germ cells. Received: 21 October 1998 / Accepted: 15 January 1999  相似文献   

16.

Background

Duodenal cytochrome b (Dcytb) is a mammalian plasma ferric reductase enzyme that catalyses the reduction of ferric to ferrous ion in the process of iron absorption. The current study investigates the relationship between Dcytb, iron, dehydroascorbate (DHA) and Hif-2α in cultured cell lines.

Methods

Dcytb and Hif-2α protein expression was analysed by Western blot technique while gene regulation was determined by quantitative PCR. Functional analyses were carried out by ferric reductase and 59Fe uptake assays.

Results

Iron and dehydroascorbic acid treatment of cells inhibited Dcytb mRNA and protein expression. Desferrioxamine also enhanced Dcytb mRNA level after cells were treated overnight. Dcytb knockdown in HuTu cells resulted in reduced mRNA expression and lowered reductase activity. Preloading cells with DHA (to enhance intracellular ascorbate levels) did not stimulate reductase activity fully in Dcytb-silenced cells, implying a Dcytb-dependence of ascorbate-mediated ferrireduction. Moreover, Hif-2α knockdown in HuTu cells led to a reduction in reductase activity and iron uptake.

Conclusions

Taken together, this study shows the functional regulation of Dcytb reductase activity by DHA and Hif-2α.

General significance

Dcytb is a plasma membrane protein that accepts electrons intracellularly from DHA/ascorbic acid for ferrireduction at the apical surface of cultured cells and enterocytes.  相似文献   

17.
Bovine adrenal chromaffin granule cytochrome (cyt) b561 is a transmembrane hemoprotein that plays a key role in transporting reducing equivalents from ascorbate to dopamine-beta-hydroxylase for catecholamine synthesis. We have developed procedures for expression and purification of functional bovine adrenal cyt b561 in insect and yeast cell systems. The bovine cyt b561 coding sequence, with or without a hexahistidine-tag sequence at the C-terminus, was cloned into the pVL1392 transfer vector under the control of the polyhedrin promoter to generate recombinant baculovirus for protein expression in Sf9 insect cells (approximately 0.5 mg detergent-solubilized cyt b561/L culture). For the yeast system, the cyt b561 cDNA was modified with a hexahistidine-tag sequence at the C-terminus, and inserted into the pPICZB vector under the control of the alcohol oxidase promoter. The recombinant plasmid was transformed into Pichia pastoris GS115 competent cells to give methanol-inducible cyt b561 expression (approximately 0.7 mg detergent-solubilized cyt b561/L culture). Recombinant His-tagged cyt b561 expressed in Sf9 or Pichia cells was readily solubilized from membrane fractions with dodecyl maltoside and purified to electrophoretic homogeneity by one-step chromatography on Ni-NTA affinity resin. The purified recombinant cytochrome from both systems had a heme to protein ratio close to two and was fully functional, as judged by comparison with the spectroscopic and kinetic parameters of the endogenous cytochrome from chromaffin granules. A novel procedure for isolation of chromaffin granule membranes was developed to utilize frozen adrenal glands instead of fresh tissue.  相似文献   

18.
Flavocytochrome b (Cyt b) is a heterodimeric, integral membrane protein that serves as the central component of an electron transferase system employed by phagocytes for elimination of bacterial and fungal pathogens. This report describes a rapid and efficient single-step purification of Cyt b from human neutrophil plasma membranes by solubilization in the nonionic detergent dodecylmaltoside (DDM) and immunoaffinity chromatography. A similar procedure for isolation of Cyt b directly from intact neutrophils by a combination of heparin and immunoaffinity chromatography is also presented. The stability of Cyt b was enhanced in DDM relative to previously employed solubilizing agents as determined by both monitoring the heme spectrum in crude membrane extracts and assaying resistance to proteolytic degradation following purification. Gel filtration chromatography and dynamic light scattering indicated that DDM maintains a predominantly monodisperse population of Cyt b following immunoaffinity purification. The high degree of purity obtained with this isolation procedure allowed for direct determination of a 2:1 heme to protein stoichiometry, confirming previous structural models. Analysis of the isolated heterodimer by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allowed for accurate mass determination of p22(phox) as indicated by the gene sequence. Affinity-purified Cyt b was functionally reconstituted into artificial bilayers and demonstrated that catalytic activity of the protein was efficiently retained throughout the purification procedure.  相似文献   

19.
Adrenal cytochrome b561 (cyt b561) is the prototypical member of an emerging family of proteins that are distributed widely in vertebrate, invertebrate and plant tissues. The adrenal cytochrome is an integral membrane protein with two b-type hemes and six predicted transmembrane helices. Adrenal cyt b561 is involved in catecholamine biosynthesis, shuttling reducing equivalents derived from ascorbate. We have developed an Escherichia coli system for expression, solubilization and purification of the adrenal cytochrome. The spectroscopic and redox properties of the purified recombinant protein expressed in this prokaryotic system confirm that the cytochrome retains a native, fully functional form over a wide pH range. Mass spectral analysis shows that the N-terminal signal peptide is intact. The new bacterial expression system for cyt b561 offers a sixfold improvement in yield and other substantial advantages over existing insect and yeast cell systems for producing the recombinant cytochrome for structure-function studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号