首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tian L  DellaPenna D  Dixon RA 《Planta》2007,226(4):1067-1073
Plastoquinone plays critical roles in photosynthesis, chlororespiration and carotenoid biosynthesis. The previously isolated pds2 mutant from Arabidopsis was deficient in tocopherol and plastoquinone accumulation, and the biochemical phenotype of this mutant could not be reversed by externally applied homogentisate, suggesting a later step in tocopherol and/or plastoquinone biosynthesis had been disrupted. Recently, the protein encoded by At3g11950 (AtHST) was shown to condense homogentisate with solanesyl diphosphate (SDP), the substrate for plastoquinone synthesis, but not phytyl diphosphate (PDP), the substrate for tocopherol biosynthesis. We have sequenced the AtHST allele in the pds2 mutant background and identified an in-frame 6 bp (2 aa) deletion in the gene. The pds2 mutation could be functionally complemented by constitutive expression of AtHST, demonstrating that the molecular basis for the pds2 mutation is this 6 bp-lesion in the AtHST gene. Confocal microscopy of EGFP tagged AtHST suggested that AtHST is localized to the chloroplast envelope, supporting the hypothesis that plastoquinone synthesis occurs in the plastid.  相似文献   

2.
Among more than 100 rice uridine diphosphate glycosyltransferases (UGTs), OsUGT-3 was selected as a candidate for producing flavonoid O-diglycosyltransferases based on phylogenetic analysis and molecular docking. This gene was functionally expressed in Escherichia coli. Analysis of kaempferol, luteolin, quercetin, and tricin reaction products using liquid chromatography-mass spectrometry revealed that these were diglucosylated. The glucosylation positions of kaempferol, which was the best substrate, were determined to be the 3- and 7-hydroxyl groups. This is the first flavonoid O-diglucosyltransferase described from rice.  相似文献   

3.
4.
5.
Lactobacillus casei was grown at 37 °C on sugarcane bagasse (5 g) soaked with cassava starch hydrolysate (final moistening volume 34 ml) containing 3 g reducing sugar in a solid-state condition. The maximum yield of l-lactic acid after various process optimisations was 2.9 g/5 g initial substrate corresponding to 97% conversion of sugar to lactic acid with initial substrate moisture of 72%.  相似文献   

6.
7.
We conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A. thaliana wild-type stem cuticular chemicals. Five lines showed distinct differences from the wild type and were further analyzed by gas chromatography and scanning electron microscopy. The five mutants were mapped to specific chromosome locations and tested for allelism with other wax mutant loci mapping to the same region. Toward this end, the mapping of the cuticular wax (cer) mutants cer10 to cer20 was conducted to allow more efficient allelism tests with newly identified lines. From these five lines, we have identified three mutants defining novel genes that have been designated CER22, CER23, and CER24. Detailed stem and leaf chemistry has allowed us to place these novel mutants in specific steps of the cuticular wax biosynthetic pathway and to make hypotheses about the function of their gene products.Abbreviations EMS Ethyl methane sulfonate - SEM Scanning electron microscopy - SSLP Simple sequence length polymorphism - WT Wild type  相似文献   

8.
9.
Symbiotic nitrogen-fixing bacteria Rhizobium leguminosarum bv. viciae VF39 secrete an acidic heteropolysaccharide, the biosynthesis of which involves the stage of polyprenyl diphosphate octasaccharide formation with its carbohydrate fragment corresponding to the repeating polymer unit. The amino acid analysis of the product of the pssA gene, we have earlier identified, showed its homology to bacterial polyisoprenyl phosphate hexose 1-phosphate transferases catalyzing the formation of phosphodiester bonds between polyprenyl phosphates and hexose 1-phosphates, whose donors are nucleotide sugars. The immunoblotting demonstrated that Rhizobium cells synthesize a protein with a molecular mass of 25 kDa, which implies the translation of the open reading frame occurring from the second initiating codon followed by the protein processing. It was shown that PssA is an integral membrane-bound protein involved in glucose 1-phosphate transfer from UDP-glucose to polyprenyl phosphate to form polyprenyl diphosphate glucose. These results suggest that the pssA gene encodes UDP-glucose:polyprenyl phosphate-glucosyl phosphotransferase.  相似文献   

10.
11.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Biotransformation of flavonoids using Escherichia coli harboring nucleotide sugar-dependent uridine diphosphate-dependent glycosyltransferases (UGTs) commonly results in the production of a glucose conjugate because most UGTs are specific for UDP-glucose. The Arabidopsis enzyme AtUGT78D2 prefers UDP-glucose as a sugar donor and quercetin as a sugar acceptor. However, in vitro, AtUGT78D2 could use UDP-N-acetylglucosamine as a sugar donor, and whole cell biotransformation of quercetin using E. coli harboring AtUGT78D2 produced quercetin 3-O-N-acetylglucosamine. In order to increase the production of quercetin 3-O-N-acetylglucosamine via biotransformation, two E. coli mutant strains deleted in phosphoglucomutase (pgm) or glucose-1-phosphate uridylyltransferase (galU) were created. The galU mutant produced up to threefold more quercetin 3-O-N-acetylglucosamine than wild type, resulting in the production of 380-mg/l quercetin 3-O-N-acetylglucosamine and a negligible amount of quercetin 3-O-glucoside. These results show that construction of bacterial strains for the synthesis of unnatural flavonoid glycosides is possible through rational selection of the nucleotide sugar-dependent glycosyltransferase and engineering of the nucleotide sugar metabolic pathway in the host strain.  相似文献   

13.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

14.
Crocus sativus L., cultivated since ancient times as the source of saffron, is a triploid plant that can be propagated only via its corms which undergo a period of dormancy. Understanding the processes taking place in the corm is essential to preserve the plant and improve its quality. Color and taste being of prime importance in the quality of the saffron spice, knowledge on polyphenol oxidase (PPO) activity in the plant is of particular interest given the role of the enzyme in fruit and vegetable browning during processing and during the storage of processed food. In this paper, PPO activity was investigated for the first time in extracts obtained from dormant C. sativus L. corms. PPO activity was detectable using l-DOPA, pyrogallol, catechol or p-cresol as substrate, each being oxidized to its corresponding o-quinone; no activity was detectable with l-tyrosine, tyramine or phenol as substrate. Two pH optima, respectively at 4.5 and 6.7, were observed with all substrates and a third one, at 8.5, was found with l-DOPA and p-cresol. Kinetics parameters studied at pH 6.7 indicated the highest catalytic efficiency (in units mg−1 prot mM−1) with pyrogallol: 150, then catechol: 39, l-DOPA: 6.4 and p-cresol: 4.6. The enzymatic activity was inhibited by 50% in the presence of 0.22, 0.35, 0.5 and 0.7 mM kojic acid with, respectively, catechol, pyrogallol, p-cresol and l-DOPA as substrate. When stained for PPO activity, non-denaturing gel electropherograms of extract revealed three distinct bands, indicating the presence of multiple isoenzymes in dormant C. sativus L. corms.  相似文献   

15.
Seol E  Jung Y  Lee J  Cho C  Kim T  Rhee Y  Lee S 《Plant cell reports》2008,27(7):1197-1206
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species.  相似文献   

16.
17.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

18.
Fu H  Yadav MP  Nothnagel EA 《Planta》2007,226(6):1511-1524
A biochemical investigation of arabinogalactan proteins (AGPs) in Physcomitrella patens was undertaken with particular emphasis on the glycan chains. Following homogenization and differential centrifugation of moss gametophytes, AGPs were obtained by Yariv phenylglycoside-induced precipitation from the soluble, microsomal membrane, and cell wall fractions. Crossed-electrophoresis indicated that each of these three AGP fractions was a mixture of several AGPs. The soluble AGP fraction was selected for further separation by anion-exchange and gel-permeation chromatography. The latter indicated molecular masses of ∼100 and 224 kDa for the two major soluble AGP subfractions. The AGPs in both of these subfractions contained the abundant (1,3,6)-linked galactopyranosyl residues, terminal arabinofuranosyl residues, and (1,4)-linked glucuronopyranosyl residues that are typical of many angiosperm AGPs. Unexpectedly, however, the moss AGP glycan chains contained about 15 mol% terminal 3-O-methyl-l-rhamnosyl residues, which have not been found in angiosperm AGPs. This unusual and relatively nonpolar sugar, also called l-acofriose, is likely to have considerable effects on the overall polarity of Physcomitrella AGPs. A review of the literature indicates that the capacity to synthesize polymers containing 3-O-methyl-l-rhamnosyl residues is present in a variety of bacteria, algae and lower land plants but became less common through evolution to the extent that this sugar has been found in only a few species of angiosperms where it occurs as a single residue on steroidal glycosides.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号