首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage P22 Abc2 protein binds to the RecBCD enzyme from Escherichia coli to promote phage growth and recombination. Overproduction of the RecC subunit in vivo, but not RecB or RecD, interfered with Abc2-induced UV sensitization, revealing that RecC is the target for Abc2 in vivo. UV-induced ATP crosslinking experiments revealed that Abc2 protein does not interfere with the binding of ATP to either the RecB or RecD subunits in the absence of DNA, though it partially inhibits RecBCD ATPase activity. Productive growth of phage P22 in wild-type Salmonella typhimurium correlates with the presence of Abc2, but is independent of the absolute level of ATP-dependent nuclease activity, suggesting a qualitative change in the nature of Abc2-modified RecBCD nuclease activity relative to the native enzyme. In lambda phage crosses, Abc2-modified RecBCD could substitute for lambda exonuclease in Red-promoted recombination; lambda Gam could not. In exonuclease assays designed to examine the polarity of digestion, Abc2 protein qualitatively changes the nature of RecBCD double-stranded DNA exonuclease by increasing the rate of digestion of the 5' strand. In this respect, Abc2-modified RecBCD resembles a RecBCD molecule that has encountered the recombination hotspot Chi. However, unlike Chi-modified RecBCD, Abc2-modified RecBCD still possesses 3' exonuclease activity. These results are discussed in terms of a model in which Abc2 converts the RecBCD exonuclease for use in the P22 phage recombination pathway. This mechanism of P22-mediated recombination distinguishes it from phage lambda recombination, in which the phage recombination system (Red) and its anti-RecBCD function (Gam) work independently.  相似文献   

2.
The repair of double strand breaks after gamma-irradiation in wild-type Escherichia coli lysogenic for lambda cI857 red3 is more efficient when lambda Gam protein is present. This phenomenon, called gam dependent radioresistance, requires the interaction of RecBCD enzyme and Gam protein. We compared cell survival after gamma-irradiation in wild-type and mutant lysogens with and without induction of Gam by transient heat treatment of the cells (6 min, 42 degrees C). The main conclusions are: (1) the RecBCD-Gam pathway of recombination repair is similar but not equivalent to RecBCD, a pathway operating in recD mutants; (2) the RecBCD-Gam pathway is dependent on recJ, recQ and recN gene products and it is proposed that the RecBCD-Gam complex has ability to load RecA protein onto single strand DNA.  相似文献   

3.
Plasmids that express the bacteriophage lambda gam gene or the P22 abc2 gene (with and without abc1) at controllable levels were placed in Escherichia coli and tested for effects on the activity of RecBCD. Like Gam, Abc2 inhibited the ATP-dependent exonuclease activity of RecBCD, apparently not by binding to DNA. However, Abc2-mediated inhibition was partial, while Gam-mediated inhibition was complete. Both Abc2 and Gam inhibited host system-mediated homologous recombination in a Chi-containing interval in the chromosome of a hybrid lambda phage; Abc2 inhibited it more strongly than Gam. Gam but not Abc2 spared a phage T4 gene 2 mutant from restriction by RecBCD; Abc2 exhibited weak sparing activity in combination with Abc1 and substantial activity in combination with both Abc1 and P22 homologous recombination function Erf. Either Gam or the combination of the lambda recombination functions Exo and Bet was sufficient to induce a mode of plasmid replication that produced linear multimers. The combination of Abc2, Abc1, and Erf also exhibited this activity. However, Erf was inactive, both by itself and in combination with Abc1; Abc2 had weak activity. These results indicate that Gam and Abc2 modulate the activity of RecBCD in significantly different ways. In comparison with lambda Gam, P22 Abc2 has a weak effect on RecBCD nuclease activity but a strong effect on its recombination-promoting activity.  相似文献   

4.
By making use of the gam(+)-plasmid, the so-called gam-dependent radioresistance was studied. This resistance is the result of the interaction between Gam protein (encoded by the gam gene of lambda) and RecBCD enzyme of Escherichia coli. gam-dependent radioresistance is observed in recB+ recC+ recD+ but not in recB+ recC+ recD- cells. It is suggested that Gam protein interacts specifically with the RecD subunit of RecBCD enzyme; the RecBC complex probably retains its activity in the presence of this viral protein.  相似文献   

5.
Plasmid R1drd-19 markedly improves the recombination deficiency of recB and recBrecC mutants of Escherichia coli K12 as measured by Hfr crosses and increases their resistance to uv inactivation. The effect correlates with the production of an ATP-dependent ds DNA exonuclease in recB/R1drd-19 cells. This paper further investigates the suppressive effect of plasmid R1drd-19 on the recB mutation of E. coli. The gene(s) responsible for the effect was localized to the 13.1-kb EcoRI-C fragment of the resistance transfer factor (RTF) portion of R1drd-19. The plasmid-encoded activity does not merely replace the RecBCD enzyme failure but differs in several significant ways. It promotes a hyper-recombinogenic phenotype, as judged by the phenomenon of super oligomerization of the tester pACYC184 plasmid in recB/R1drd-19 cells and two inter- and intramolecular plasmid recombination test systems. It is probably not inhibited by lambda Gam protein and does not restrict plating of T4gp2 mutant. No significant homology between the E. coli chromosomal fragment carrying recBrecCrecD genes and the EcoRI-C fragment of R1drd-19 was observed. It is suggested that the plasmid-encoded recombination activity is involved in a new minor recombination pathway (designated RecP, for Plasmid). RecP resembles in some traits the RecBCD-independent pathways RecE and RecF but differs in activity and perhaps substrate specificity from the main RecBCD pathway.  相似文献   

6.
Escherichia coli strains bearing plasmids expressing phage P22 anti-RecBCD functions abc1 and abc2 were tested for the presence of recBC-like phenotypes. Abc2 induces moderate sensitivity to UV light in wild-type and recD mutant strains but severely sensitizes both recF and recJ mutants. Abc1 has little effect on UV sensitivity in wild-type or recF or recJ mutant hosts but increases the sensitivity of recD mutants to a UV dose of 20 J/m2 about 10-fold. Abc2 induces E. coli to segregate inviable cells during growth, interferes with the growth of lambda red gam chi+ and chi 0 phage (the effect is greater with chi+ phage), inhibits Chi and Chi-like activity as measured by lambda red gam crosses, and prevents SOS induction in response to nalidixic acid; Abc1 has no effect in these tests. Abc2, alone or with Abc1, does not allow the growth of lambda red gam in the presence of a P2 prophage but does not kill the P2 lysogenic host (as lambda Gam does). Finally, Abc2 inhibits conjugational recombination in wild-type cells to the level seen in recBC mutants. These data suggest that Abc2 inhibits the recombination-promoting ability of RecBCD but leaves the exonuclease functions intact.  相似文献   

7.
Nucleotide sequences called Chi (5'-GCTGGTGG-3') enhance homologous recombination near their location by the RecBCD enzyme in Escherichia coli (Chi activation). A partial inhibition of Chi activation measured in lambda red gam mutant crosses was observed after treatment of wild-type cells with DNA-damaging agents including UV, mitomycin, and nalidixic acid. Inhibition of Chi activation was not accompanied by an overall decrease of recombination. A lexA3 mutation which blocks induction of the SOS system prevented the inhibition of Chi activation, indicating that an SOS function could be responsible for the inhibition. Overproduction of the RecD subunit of the RecBCD enzyme from a multicopy plasmid carrying the recD gene prevented the induced inhibition of Chi activation, whereas overproduction of RecB or RecC subunits did not. It is proposed that in SOS-induced cells the RecBCD enzyme is modified into a Chi-independent recombination enzyme, with the RecD subunit being the regulatory switch key.  相似文献   

8.
Plasmid recombination, like other homologous recombination in Escherichia coli, requires RecA protein in most conditions. We have found that the plasmid recombination defect in a recA mutant can be efficiently suppressed by the beta protein of bacteriophage lambda. beta protein is required for homologous recombination of lambda chromosomes during lytic phage growth in a recA host and is known to have a strand-annealing activity resembling that of RecA protein. The bioluminescence recombination assay was used for genetic analysis of beta-protein-mediated plasmid recombination. Efficient suppression of the recA mutation by beta protein required the absence of the E. coli nucleases exonuclease I and RecBCD nuclease. These nucleases inhibit a RecA-mediated plasmid recombination pathway that is more efficient than the pathway functioning in wild-type cells. Like RecA-mediated plasmid recombination in RecBCD- ExoI- cells, beta-protein-mediated plasmid recombination depended on concurrent DNA replication and on the activity of the recQ gene. However, unlike RecA-mediated plasmid recombination, beta-protein-mediated recombination in RecBCD- ExoI- cells was independent of recF and recJ activities. We propose that inactivation of exonuclease I and RecBCD nuclease stabilizes a recombination intermediate that is involved in RecA- and beta-protein-catalyzed homologous pairing reactions. We suggest that the intermediate may be linear plasmid DNA with a protruding 3' end, since these nucleases are known to interfere with the synthesis of such linear forms. The different recF and recJ requirements for beta-protein-dependent and RecA-dependent recombinations imply that the mechanisms of formation or processing of the putative intermediate differ in the two cases.  相似文献   

9.
The lambda Gam protein was isolated from cells containing a Gam-producing plasmid. The purified Gam protein was found to bind to RecBCD without displacing any of its subunits. Gam was shown to inhibit all known enzymatic activities of RecBCD: ATP-dependent single- and double-stranded DNA exonucleases, ATP-independent single-stranded endonuclease, and the ATP-dependent helicase. When produced in vivo, Gam inhibited chi-activated recombination in lambda red gam crosses but had little effect on the host's ability to act as a recipient in conjugational recombination. These experiments suggest that RecBCD possesses an additional "unknown" activity that is resistant to or induced by Gam. Additionally, the expression of Gam in recD mutants sensitizes the host to UV irradiation, indicating that Gam alters one or more of the in vivo activities of RecBC(D-).  相似文献   

10.
The Escherichia coli RecBCD holoenzyme and the individual constituent subunits have been purified from overproducing strains. The purified RecBCD holoenzyme has a native molecular mass of approximately 330 kDa, indicative of a heterotrimer subunit assembly. The RecB, RecC, and RecD subunits can associate in vitro to give nuclease, helicase, ATPase, and Chi-specific endonuclease activities which are indistinguishable from those of the RecBCD holoenzyme. At concentrations at which the reconstituted RecB + C + D enzyme is very active, none of the individual RecB, RecC, or RecD subunits have readily detectable activities of the holoenzyme, except RecB protein which had previously been shown to exhibit DNA-dependent ATPase activity (Hickson, I. D., Robson, C. N., Atkinson, K. E., Hutton, L., and Emmerson, P. T. (1985) J. Biol. Chem. 260, 1224-1229). At higher concentrations and with shorter DNA substrates reconstituted RecBC protein exhibits low levels of helicase and exonuclease activity.  相似文献   

11.
The lambda Gam protein inhibits RecBCD binding to dsDNA ends   总被引:1,自引:0,他引:1  
Inactivation of the Escherichia coli RecBCD enzyme by the lambda Gam protein is an essential step that accompanies the lambda Red proteins for gene replacement using recombineering technology. It has been shown that Gam inhibits all the activities of RecBCD to the same extent. Nonetheless, some in vivo properties of recBCD mutants cannot be mimicked effectively by the expression of gam in vivo. An examination of the mechanism of Gam's inhibition of RecBCD was performed, and it was found that Gam inhibits the binding of RecBCD to double-stranded DNA ends, even if RecBCD is bound to DNA before its interaction with Gam. When ATP is added to the reaction to induce helicase activity, most of the reaction is inhibited by Gam, but residual amounts of unwinding are detected, despite a 40-fold excess of Gam/RecBCD. The same inhibitory effect of Gam was seen on RecBCD that had been modified by the P22 anti-RecBCD protein Abc2, though the inhibitory effect was diminished due to the tighter binding of Abc2-modified RecBCD to double-stranded DNA ends. These data suggest that cells containing Gam-expressing plasmids retain a small amount of uninhibited enzyme. Given the suspected instability of Gam in vivo, care must be taken when interpreting results from experiments containing Gam-inhibited RecBCD species. A revised model is proposed for Gam-induced radioresistance of E. coli to ionizing radiation.  相似文献   

12.
The RecBCD enzyme of Escherichia coli consists of three subunits RecB, RecC and RecD. RecBCD enzyme activities are regulated by its interaction with recombination hotspot Chi. Biochemical and genetic evidence suggest that interaction with Chi affects RecD subunit, and that RecD polypeptide overproduction antagonizes this interaction, suggesting that intact RecD replaces a Chi-modified one. We used bacteria with fragmented chromosomes due to double-strand breaks inflicted by UV and gamma-irradiation to explore in which way increased concentrations of RecBCD's individual subunits affect DNA metabolism. We confirmed that RecD overproduction alters RecBCD-dependent DNA repair and degradation in E. coli. Also, we found that RecB and RecC overproduction did not affect these processes. To determine the basis for the effects of RecD polypeptide overproduction, we monitored activities of RecBCD enzyme on gamma-damaged chromosomal DNA and, in parallel, on lambda and T4 2 phage DNA duplexes provided at intervals. We found that gamma-irradiated wild-type bacteria became transient, and RecD overproducers permanent recB(-)/C(-) phenocopies for processing phage DNA that is provided in parallel. Since this inability of irradiated bacteria to process extrachromosomal DNA substrates coincided in both cases with ongoing degradation of chromosomal DNA, which lasted much longer in RecD overproducers, we were led to conclude that the RecB(-)/C(-) phenotype is acquired as a consequence of RecBCD enzyme titration on damaged chromosomal DNA. This conclusion was corroborated by our observation that no inhibition of RecBCD activity occurs in gamma-irradiated RecBCD overproducers. Together, these results strongly indicate that RecD overproduction prevents dissociation of RecBCD enzyme from DNA substrate and thus increases its processivity.  相似文献   

13.
The effects of the mutation pairs recB21 recF143 and recB21 uvrD152 on the frequency of genetic recombination were investigated in lambda phage-prophage crosses under homoimmune conditions. To prevent recombinants from being formed by the phage red system, these experiments were performed with phages and prophages carrying red and gam mutations. Both spontaneous and damage-induced recombination was measured, the phages being either undamaged or treated with trimethylpsoralen and 360-nm light to cross-link the phage DNA. Control and damaged phages were allowed to infect lysogenic host cells under conditions in which phage gene expression was repressed and phage DNA replication was blocked by lambda immunity. Although the double mutations recB21 recF143 and recB21 uvrD152 reduced recombination in Hfr by F- crosses to 0.3 to 0.02% of the wild-type controls, the presence of these pairs of mutations in the host lysogens had relatively little effect on the results of the phage-prophage crosses. In the latter system, recB21 recF143 reduced spontaneous and damaged-induced recombination by less than threefold whereas recB21 uvrD152 increased it to three times the wild-type level, the increase being attributable to the uvrD mutation. Evidently, the gene products of recB,C uvrD, and recF wee not needed for lambda phage-prophage recombination under repressed conditions.  相似文献   

14.
The RecA loading activity of the RecBCD enzyme, together with its helicase and 5' --> 3' exonuclease activities, is essential for recombination in Escherichia coli. One particular mutant in the nuclease catalytic center of RecB, i.e., recB1080, produces an enzyme that does not have nuclease activity and is unable to load RecA protein onto single-stranded DNA. There are, however, previously published contradictory data on the recombination proficiency of this mutant. In a recF(-) background the recB1080 mutant is recombination deficient, whereas in a recF(+) genetic background it is recombination proficient. A possible explanation for these contrasting phenotypes may be that the RecFOR system promotes RecA-single-strand DNA filament formation and replaces the RecA loading defect of the RecB1080CD enzyme. We tested this hypothesis by using three in vivo assays. We compared the recombination proficiencies of recB1080, recO, recR, and recF single mutants and recB1080 recO, recB1080 recR, and recB1080 recF double mutants. We show that RecFOR functions rescue the repair and recombination deficiency of the recB1080 mutant and that RecA loading is independent of RecFOR in the recB1080 recD double mutant where this activity is provided by the RecB1080C(D(-)) enzyme. According to our results as well as previous data, three essential activities for the initiation of recombination in the recB1080 mutant are provided by different proteins, i.e., helicase activity by RecB1080CD, 5' --> 3' exonuclease by RecJ- and RecA-single-stranded DNA filament formation by RecFOR.  相似文献   

15.
Transient induction of lambda prophage increases the ultraviolet light resistance of most exponentially growing Escherichia coli lysogens. Resistance is increased in wild-type, recB, recB recC, recB recC recF, and recB recC recL hosts. No enhancement in recA lysogens was found, nor was there enhancement in stationary cultures. Enhancement was dependent upon the lambdared recombination system. Transient induction also increases the genetic recombination rate in recB lysogens as measured in Hfr X F- matings.  相似文献   

16.
The RecBCD nuclease of Escherichia coli and "recombinase" determined by R1drd-19 plasmid (the latter is able to replace at least partially the indicated cellular enzyme) were shown to differ from each other in some essential features. The product encoded by the plasmid as distinct from RecBCD nuclease practically is not sensitive to inhibition by GamS protein of the lambda phage. Earlier, it was found that the presence of R1drd-19 plasmid in the recBC cells restores the level of the total ATP-dependent exonuclease activity because of appearance in such cells of a new exonuclease activity also ATP-dependent. The exonuclease activity determined by R1drd-19 plasmid was found to differ from the corresponding activity of the RecBCD enzyme. The plasmid enzyme was able to prevent reproduction of T4g2- mutant on recBC cells. The ability of the plasmid "recombinase" to some stimulation of intrachromosomal recombination in recA mutant witness to incomplete RecA-dependence of its function. No significant homology was registered between Escherichia coli DNA fragment containing the recB, recC, recD genes and the EcoRI-C-fragment of R1drd-19 carrying the sequences responsible for recombination and repair functions of the plasmid.  相似文献   

17.
The RecB subunit of the Escherichia coli RecBCD enzyme has been shown in previous work to have two domains: an N-terminal 100 kDa domain with ATP-dependent helicase activity, and a C-terminal 30 kDa domain. The 30 kDa domain had nuclease activity when linked to a heterologous DNA binding protein, but by itself it appeared unable to bind DNA and lacked detectable nuclease activity. We have expressed and isolated this 30 kDa domain, called RecB(N), and show that it does have nuclease activity detectable at high protein concentration in the presence of polyethylene glycol, added as a molecular crowding agent. The activity is undetectable in a mutant RecB(N)protein in which an aspartate residue has been changed to alanine. Structural analysis of the wild-type and mutant RecB(N)proteins by second derivative absorbance and circular dichroism spectroscopy indicates that both are folded proteins with very similar secondary and tertiary structures. The results show that the Asp-->Ala mutation has not caused a significant structural change in the isolated domain and they support the conclusion that the C-terminal domain of RecB has the sole nuclease active site of RecBCD.  相似文献   

18.
Comparison of subunit AddA of the Bacillus subtilis AddAB enzyme, subunit RecB of the Escherichia coli RecBCD enzyme, and subunit RecB of the Haemophilus influenzae RecBCD enzyme revealed several regions of homology. Whereas the first seven regions are common among helicases, the two C-terminally located regions are unique for RecB of E. coli and H. influenzae and AddA. Deletion of the C-terminal region resulted in the production of an enzyme which showed moderately impaired levels of ATP-dependent helicase activity, whereas the ATP-dependent exonuclease activity was completely destroyed. The mutant enzyme was almost completely capable of complementing E. coli recBCD and B. subtilis addAB strains with respect to DNA repair and homologous recombination. These results strongly suggest that at least part of the C-terminal region of the AddA protein is indispensable for exonuclease activity and that, in contrast to the exonuclease activity, the helicase activity of the addAB gene product is important for DNA repair and homologous recombination.  相似文献   

19.
Bacteriophage lambda can recombine in recBC sbcB sbcC mutant cells by using its own gene orf, the Escherichia coli recO, recR, and recF genes, or both. Expression of an orf-containing plasmid complements the recombination defects of orf mutant phage. However, this clone does not complement a recO mutation for conjugational recombination or recO, recR, or recF mutations for repair of UV-induced DNA damage. A plasmid clone of orf produces a protein with an apparent molecular mass of 15 kDa.  相似文献   

20.
The RecD subunit of the RecBCD enzyme from Escherichia coli contains an amino acid sequence common to many enzymes which bind ATP or GTP (Gly-X-X-Gly-X-Gly-Lys-Thr). We have changed the conserved lysine residue (amino acid number 177) in the RecD protein to glutamine to investigate the role of RecD, and ATP-binding to RecD, in the enzymatic activities of RecBCD. The mutant RecD protein assembles with the RecB and RecC subunits and the mutant enzyme, designated RecBCD-K177Q, can be purified in the same way as the wild-type RecBCD enzyme. The mutant RecD subunit in RecBCD-K177Q is photolabeled to a lesser extent by the ATP analogue 8-azido-adenosine-5'-triphosphate than is the wild-type RecD subunit in RecBCD, suggesting that the mutation has reduced the affinity of RecD for ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号