首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tissue and species specificity of GTP-stimulated nuclear membrane fusion has been examined. The fusion capacity of the membranes of nuclei isolated from two different tissue sources and three different animal species was determined. In all cases the incubation of isolated nuclei in the presence of 0.5 mM GTP led to the pairing of nuclei and formation of continuous outer membranes between the nuclei as a result of membrane fusion. Experiments using mixtures of nuclei from the different sources demonstrated that hybrid nuclear membranes could be formed as a result of the fusion between the outer membranes of heterologous nuclear pairs. The results suggest that the capacity for nuclear membranes to fuse in the presence of GTP is highly conserved when viewed on an evolutionary basis.  相似文献   

2.
A cytological study of barley microspores during pretreatment of the uninucleate stage to the early culture stage was conducted utilizing six genotypes. Among the three main pretreatments investigated, microspores completed the first mitotic division during 28 d cold pretreatment of spikes, with or without leaf sheath attached, and during 0.3 M mannitol pretreatment of anthers at 25 degrees C. However, during a 4 d pretreatment in 0.3 M mannitol at 4 degrees C this first mitotic division was blocked or delayed and subsequently most often occurred during the first day on culture medium. The first mitotic division of most microspores pretreated in 0.3 M mannitol was mostly symmetrical (55-60%), whereas it was asymmetric (94%) during the 28 d cold pretreatment of spikes. Following the first mitotic division during the mannitol pretreatment at 25 degrees C, closely associated daughter nuclei often appeared to fuse via membrane coalescence, leading to a high frequency of large uninucleate microspores. Based upon nuclear size, the frequencies of fused uninucleate microspores in genotypes GBC 778, GBC 777 and Igri were estimated to be 87%, 54% and 75%, respectively, after a 4 d mannitol pretreatment at 25 degrees C. Chromosome numbers in dividing nuclei and relative densitometry measurements of nuclear DNA in microspores from cv. Igri confirmed the apparent fused nature of large nuclei in uninucleate microspores. The high frequency of fused nuclei indicates that nuclear fusion occurred between both symmetric and asymmetric nuclei. Microspores of cv. Igri cultured on filter paper following three different pretreatments provided an average of about 12 000 embryo-like structures (ELS) per plate. In samples, 85-97% of these ELS regenerated green shoots. The frequency of doubled haploids (74-83%) following all pretreatments was similar to the frequencies of fused nuclei. The pretreatment of spikes in 0.3 M mannitol at 4 degrees C for 4 d is preferred as it appears to provide genotype independent induction and suspension of nuclear division, as well as regenerating green plants in a shorter time than cold alone.  相似文献   

3.
Random amplified polymorphic DNA (RAPD) analysis was applied to individual modules (zooids) of a colonial ascidian to investigate the presence and extent of chimerism, the parabiotic association of different genetic entities. The technique proved to be rapid and efficient for distinguishing different genotypes present in a colony, and revealed genetic mosaicism in wild material, as well as in laboratory cultures following planned fusion. Approximately one-third of colonies in the natural population studied possessed multiple genotypes, presumably as the result of fusion of different colonies. Furthermore, individual zooids of different genetic origin often intermingled after colony fusion, spreading each genotype throughout a larger total area.  相似文献   

4.
Studies on the fusion of male and female nuclei in fertilization of Helianthus an- nuus L., Triticum aestivan L., Gossypium hisutum L., Hosta caerulea Tratt., and Pinus tabulaeformis Carr. were made in the present work. The results are summarized as follows: 1. The essential process of the fusion of male and female nuclei during syngamy in four species of angiosperms studied may' be generalized as follows: (1) the male nucleus made contact with the female one, (2) followed by the fusion of nuclear membranes between the male and female nuclei. (3) then the despiralization of male spireme happened and male nucleolus made its appearance inside of the fertilized egg nucleus (4) the male chromatin dispersed and make its appearance indistinguishable from that of the female chromatin, (5) the male and female nucleoli fused together to form a larger nucleolus as a sign of completion of the fusion of the two nuclei. In the first mitotic division of the zygote there was only one common mitotic spindle. 2. The essential process of the fusion of egg and sperm nuclei during syngamy in a gymnosperm-Pinus tabulaeformis could also be outlined as follows: (1) the sperm nucleus made contact with the egg nucleue, (2) the fusion of nuclear membranes happened between the male and female nuclei, (3) the male and female ehromatins condensed to form two separate groups of chromatin threads together with the very apparent apperance of the male and female nucleoli at this stage, (4) the male and female chromosomes grouped respectively in their own spindles while both nucleoli disappeared, (5) then the two spindles fused together and all the chromosomes arranged to form a common equatorial plate, (6) finally two daugter nuclei resulted from the mitotic division. 3. Based on the facts that there were two different patterns of the fusion of male and female nuclei in fertilization discribed, all of these accounts are in general accord with the condition usually described that there are two types of fertilization, the pre- mitotic and postmitotie syngamy in higher plants. The type of angiosperm fertilization and the mechanism of promoting the zygote to divide after fertilization are discussed, and the nuclear fusion in sexual reproduction has been compared with that of somatic cell hybridization.  相似文献   

5.
Large multinucleate (LMN) HeLa cells with more than 10–50 nuclei were produced by random fusion with polyethylene glycol. The number of nuclei in a particular stage of the cell cycle at the time of fusion was proportionate to the duration of the phase relative to the total cell cycle. The fused cells did not gain generation time. Interaction of various nuclei in these cells has been observed. The nuclei initially belonging to the G1-or S-phase required a much longer time to complete DNA synthesis than in mononucleate cells. Some of the cells reached mitosis 15 h after fusion, whereas others required 24 h. The cells dividing early, contained a larger number of initially early G1-phase nuclei than those cells dividing late. The former very often showed prematurely condensed chromosome (PCC) groups. In cells with a large number of advanced nuclei the few less advanced nuclei could enter mitosis prematurely. On the other hand, the cells having a large number of nuclei belonging initially to late S-or G2-phase took longer to reach mitosis. These nuclei have been taken out of the normal sequence and therefore failed to synthesize the mitotic factors and depended on others to supply them. Therefore the cells as a whole required a longer period to enter mitosis. Although the nuclei became synchronized at metaphase, the cells revealed a gradation in prophase progression in the different nuclei. At the ultrastructural level the effect of advanced nuclei on the less advanced ones was evident with respect to chromosome condensation and nuclear envelope breakdown. Less advanced nuclei trapped among advanced nuclei showed PCC and nuclear envelope breakdown prematurely, whereas mitotic nuclei near interphase or early prophase nuclei retained their nuclear envelopes for a much longer time. PCC is closely related to premature breakdown of the nuclear envelope. Our observations clearly indicate that chromosome condensation and nuclear envelope breakdown are two distinct events. Kinetochores with attached microtubules could be observed on prematurely condensed chromosomes. Kinetochores of fully condensed chromosomes often failed to become connected to spindle elements. This indicates that the formation of a functional spindle is distinct from the other events and may depend on different factors.  相似文献   

6.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

7.
In intergeneric fusion fromMougeotia andZygnema protoplasts, the fate of fusion products, as well as nuclei and chloroplasts, could be classified according to the number of protoplasts involved from the two algae. Stable elongation growth occurred only in products of groups involving one protoplast from one alga and several protoplasts from the other alga. The features of the elongating products were those of the alga more numerously represented. The different nuclei combined by fusion failed to co-exist. In the groups involving one protoplast from one alga and several from the other, the nucleus from the former degenerated in an early period and only the nuclei from the latter were maintained. Also, the different chloroplasts combined did not co-exist. The genus of the chloroplasts maintained coincided with that of the nuclei maintained. The chloroplasts from the other genus degenerated gradually. An early morphological change in the degenerating chloroplasts was seen in the quantity of starch grains. Later, the chloroplasts generally became rounded, In degeneratingZygnema chloroplasts, thylakoid stacking was prominent. Without collapse of the thylakoid or accumulation of plastoglobules, the degenerating chlorplasts showed rupture of the chloroplast envelope.  相似文献   

8.
The analysis of nuclear DNA contents in various tissues of potato genotypes showed that flow cytometry is a rapid method to characterize large populations of cells for polysomaty, that is, the occurrence of cells with normal DNA levels together with cells containing endoreduplicated nuclei. The proportion of endoreduplicated nuclei varied in different tissues and genotypes of potato. The analysis of callus and cell cultures showed that the temporal changes in nuclear DNA contents during in vitro growth can be followed and the degree of polyploidization quantified. It is concluded that flow cytometry is a highly suitable method to detect ploidy changes in differentiated plant tissues and calli which are often not amenable for chromosome number determination.  相似文献   

9.
The reactivation of chick erythrocyte nuclei after Sendai virus induced fusion of chick erythrocytes with intact or anucleate rat myoblasts or rat epithelial cells was studied by electron microscopy. Both in heterokaryons and in reconstituted cells formed by the fusion of chick red cells with anucleate rat L6 myoblasts the amount of highly condensed chromatin in the chick nuclei decreased with time after fusion at the same time as the proportion of dispersed chromatin increased. Nuclear organelles, typical of active nuclei but absent in the nuclei of unfused erythrocytes, appeared during reactivation. The percentage of chick nuclei containing a nucleolus was low 24 h after fusion but increased so that almost all nuclei contained one or more nucleoli 120 h after fusion. In reconstituted cells the frequency of nucleoli was much lower than in heterokaryons. In other respects, the erythrocyte nuclei introduced into anucleate rat cells underwent a normal reactivation and appeared to be well integrated with the cytoplasm. Thus, the nuclear envelope consisted of two normal leaflets in direct contact with the cytoplasm. Nuclear pores were observed in front of interchromatin channels. A normal cytoplasmic geometry appeared to be re-established since the Golgi apparatus occupied a position close to the poles of the chick nucleus.  相似文献   

10.
A method for the isolation of reactivated chick erythrocyte nuclei from heterokaryons was developed. The heterokaryons were produced by fusing chick erythrocytes with HeLa or L cells in the presence of inactivated Sendai virus. At various time intervals after fusion nuclei were isolated directly from the monolayer by treatment with an acidic detergent solution. Chick erythrocyte nuclei were then separated from other nuclei (HeLa or L cell) by centrifugation on sucrose gradients. The purified preparation of reactivated chick erythrocyte nuclei was shown to be free from other nuclei and cytoplasmic contamination. By using L cells which had been labelled with 3H-leucine before fusion or heterokaryons labelled after fusion it was demonstrated that labelled mouse proteins migrate from the cytoplasm of the heterokaryons into the reactivating chick erythrocyte nuclei. 3H-uridine labelling of heterokaryons made by fusing UV-irradiated chick erythrocytes with L cells failed to reveal any significant migration of mouse RNA into the chick erythrocyte nuclei.  相似文献   

11.
Fuyama Y 《Genetics》1986,112(2):237-248
Sperm that are produced by males homozygous for ms(3)K81 , a male sterile mutant of Drosophila melanogaster, are defective in syngamy but are capable of activating eggs to develop gynogenetically. The activated eggs usually produce haploid embryos, but a small fraction (10 -4–10-5) of them give rise to diploid impaternate adults. To know the cytological mechanisms by which these impaternates restore diploidy, the genotypes of impaternate progeny obtained from females doubly heterozygous for visible markers were examined. The results show that, as generally found among parthenogenetic Drosophila, diploidy is restored after completing meiosis either by pronuclear fusion or by gamete duplication (doubling of a haploid cleavage nucleus). The fusion of two nonsister nuclei following meiosis II (central fusion) was indicated to be a predominant mode of diploidization in this species. Two meiotic mutants, mei-9 and mei-S332, which are known to greatly increase meiotic nondisjunction, did not cause an increased incidence of impaternates. This seems to exclude the possibility that some impaternates might have been derived from diploid egg nuclei produced through nondisjunction.  相似文献   

12.
Incubation of highly purified nuclei with rough microsomes stripped of associated ribosomes and physiological concentrations of guanosine triphosphate (GTP) led to the fusion of outer membranes of nuclei with microsomes to form large irregular membrane extensions. Measurement of membrane profiles in electron micrographs revealed that the outer membranes of nuclei incubated under these conditions increased significantly in length compared with that of outer membranes of unincubated or control incubated nuclei. This morphometric assay for fusion was used to check membrane and tissue specificity. It was found that GTP did not stimulate fusion between other intracellular membranes (e.g. mitochondrial or Golgi) or between such membranes and nuclear envelopes. GTP did, however, stimulate fusion between stripped rough microsomes from rat liver and outer membranes of nuclei from rat brain. These studies have revealed that membranes of the rough endoplasmic reticulum and nuclear envelope possess unique recognition and fusion properties and as such constitute the first demonstration of membrane interaction specificity at the intracellular level.  相似文献   

13.
A previous report (G. E. Woloschak and D. Senitzer, submitted for publication) has demonstrated that mitogen-stimulated splenocytes fuse at a much higher frequency than untreated splenocytes as measured by the fusion index (a calculation of the number of nuclei in fused cells vs the total number of nuclei). A measurement of the fusion indices of NZB spleen cells provides results markedly different from those observed with splenocytes from control strains of mice—NZB spleen cells exhibit a spontaneously high fusion index. In this assay, they spontaneously display the same fusing capacity as that observed in cultures of mitogen-treated spleen cells from control strains of mice. This elevated fusion index is not affected by treatment with anti-Thy-1.2 and complement, but is abrogated by treatment with anti-immunoglobulin serum and complement. This suggests that a B cell is responsible for the high fusion index of NZB splenocytes. This high fusion index is present when using splenocytes from both male and female mice in the fusion assay, and can be observed using spleen cells from NZB mice as young as 12 days. This appears to be the result of a spontaneous polyclonal B-cell activation in NZB mice.  相似文献   

14.
The method of flow cytometry was used to study polyploidization of hepatocytes following X-, gamma-, and neutron-irradiation. Ionizing radiation was shown to induce cell polyploidization by two different ways: (1) cells and nuclei fusion, and (2) restriction of mitosis after DNA replication. RBE of 14 MeV neutrons with respect to fusion was about 5.10(3). With neutron irradiation, the sensitivity of cells by fusion was not lower than that by chromosome mutations.  相似文献   

15.
F Constabel 《In vitro》1976,12(11):743-748
Somatic hybridization in higher plants has come into focus since methods have been established for protoplast fusion and uptake of foreign DNA and organelles by protoplasts. Polyethylene glycol (PEG) was an effective agent for inducing fusion. Treatment of protoplasts with PEG resulted in 5 to 30% heterospecific fusion products. Protoplasts of different species, genera and even families were compatible when fused. A number of protoplast combinations (soybean + corn, soybean + pea, soybean + tobacco, carrot + barley, etc.) provided fusion products which underwent cell division and callus formation. Fusion products initially were heterokaryocytes. In dividing heterokaryocytes, random distribution of mitotic nuclei was observed to be accompanied by multiple wall formation and to result in chimeral callus. Juxtaposition of mitotic nuclei suggested nuclear fusion and hybrid formation. Fusion of heterospecific interphase nuclei was demonstrated in soybean + pea and carrot + barley heterokaryons. Provided parental protoplasts carry suitable markers, the fusion products can be recognized. For the isolation and cloning of hybrid cells, fusion experiments must be supplemented with a selective system. Complementation of two non-allelic genes that prevent or inhibit growth under special culture conditions appears as the principle on which to base the selection of somatic hybrids. As protoplasts of some species have been induced to regenerate entire plants, the development of hybrid plants from protoplast fusion products is feasible and has already been demonstrated for tobacco.  相似文献   

16.
The phytochrome family of plant photoreceptors has a central role in the adaptation of plant development to changes in ambient light conditions. The individual phytochrome species regulate different or partly overlapping physiological responses. We generated transgenic Arabidopsis plants expressing phytochrome A to E:green fluorescent protein (GFP) fusion proteins to assess the biological role of intracellular compartmentation of these photoreceptors in light-regulated signaling. We show that all phytochrome:GFP fusion proteins were imported into the nuclei. Translocation of these photoreceptors into the nuclei was regulated differentially by light. Light-induced accumulation of phytochrome species in the nuclei resulted in the formation of speckles. The appearance of these nuclear structures exhibited distinctly different kinetics, wavelengths, and fluence dependence and was regulated by a diurnal rhythm. Furthermore, we demonstrate that the import of mutant phytochrome B:GFP and phytochrome A:GFP fusion proteins, shown to be defective in signaling in vivo, is regulated by light but is not accompanied by the formation of speckles. These results suggest that (1) the differential regulation of the translocation of phytochrome A to E into nuclei plays a role in the specification of functions, and (2) the appearance of speckles is a functional feature of phytochrome-regulated signaling.  相似文献   

17.
ZOBEL  ALICJA M. 《Annals of botany》1985,55(6):765-773
Tannin coenocytes in shoots of Sambucus racemosa L. developfrom mono-nucleate tannin cells which can be distinguished amongthe cells of the first internode, and which keep on growing.After karyokinesis without cytokinesis bi-nucleate tannin cellsoccur which yield a synchronous karyokinesis leading to 4 nucleiin the tube. The number of nuclei in the coenocyte is 2n wheren equals the number of karyokineses that have occurred. Sometimesthe number of nuclei is different and one nucleus is bigeerthan the rest indicating that a previous fusion of nuclei hasoccurred. The distribution of nuclei in the coenocyte supportsthe possibility of fusion of chromosome sets at the moment ofnuclear envelope dispersion. Sambucus racemosa L., coenocytes, synchronous karyokinesis, development  相似文献   

18.
The proteins of wild-type and polyploid plasmodia of P. polycephalum were prelabelled with [3H]leucine and [14C]leucine. The two types of plasmodia were then fused for 2 h. Following fusion the nuclei were isolated and the smaller wild-type cell nuclei separated from the larger polyploid cell nuclei. The proteins were isolated from the recipient cell nuclei and the recipient nuclear proteins extracted. Ratios of 3H/14C in the various nuclear protein fractions show that during fusion differential transfer of labelled preformed proteins from the donor cell into the recipient cell nucleus occurs. The quantity of proteins transferred varies among the different fractions and with the phase of the cell cycle. Isotopic dilution experiments indicate that these differences in protein transfer are, in part, due to a high rate of synthesis and turnover of the nuclear proteins.  相似文献   

19.
G. Hause  M. -B. Schröder 《Protoplasma》1987,139(2-3):100-104
Summary Karyogamy during fertilization inTriticale starts about 60 minutes after pollination. It was studied in the egg and the central cell by electron microscopy. The fusion of the sperm cell nuclei with the egg and central cell nuclei begins with nuclear envelope fusion presumably with participation of the endoplasmic reticulum cisternae. Initially, fusion is restricted to small bridges between the nuclei. It is accompanied by the appearance of intracisternal lipid droplets.  相似文献   

20.
The cellular responses induced by Meloidogyne arenaria races 1 and 2 in three soybean genotypes, susceptible CNS, resistant Jackson, and resistant PI 200538, were examined by light microscopy 20 days after inoculation. Differences in giant-cell development were greater between races than among the soybean genotypes. M. arenaria race 1 stimulated small, poorly formed giant-cells in contrast with M. arenaria race 2, which induced well-developed, thick-walled, multinucleate giant-cells. The number of nuclei per giant-celt was variable, but fewer nuclei were usually present in giant-cells induced by race 1 (mean 16 nuclei) than in giant-cells induced by race 2 (mean 41 nuclei). Differences observed in giant-cell development were related to differences in growth and maturation of M. arenaria races 1 and 2 and host suitability of the soybean genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号