首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ctriporin peptide (Ctr), a novel antimicrobial peptide isolated from the venom of the scorpion Chaerilus tricostatus, shows a broad‐spectrum of antimicrobial activity and is able to inhibit antibiotic resistant pathogens, including Methicillin resistant Staphylococcus aureus, Methicillin Resistant Coagulase‐negative Staphylococcus, and Penicillin Resistant Staphylococcus epidermidis strains. To understand the active conformation of the Ctr peptide in membranes, we have investigated the interaction of Ctr with the negatively charged and zwitterionic membrane‐mimetic micelles such as sodium dodecyl sulphate (SDS) and n‐dodecylphosphocholine (DPC), respectively. The interactions were studied using fluorescence and circular dichroism (CD) spectroscopy. Fluorescence experiments revealed that the N‐terminus tryptophan residue of Ctr interacted with the hydrophobic core of the membrane mimicking micelles. The CD results suggest that interactions with membrane‐mimetic micelles induce an α‐helix conformation in Ctr. Moreover, we have determined the solution structures of Ctr in SDS and DPC micelles using nuclear magnetic resonance (NMR) spectroscopy. The structural comparison of Ctr in the presence of SDS and DPC micelles showed significant conformational changes. The observed structural differences of Ctr in anionic versus zwitterionic membrane‐mimetic micelles suggest that the mode of interaction of this peptide may be different in two environments which may account for its ability to differentiate bacterial and eukaryotic cell membrane. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1143–1153, 2014.  相似文献   

2.
Brevinin‐2‐related peptide (BR‐II), a novel antimicrobial peptide isolated from the skin of frog, Rana septentrionalis, shows a broad spectrum of antimicrobial activity with low haemolytic activity. It has also been shown to have antiviral activity, specifically to protect cells from infection by HIV‐1. To understand the active conformation of the BR‐II peptide in membranes, we have investigated the interaction of BR‐II with the prokaryotic and eukaryotic membrane‐mimetic micelles such as sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC), respectively. The interactions were studied using fluorescence and circular dichroism (CD) spectroscopy. Fluorescence experiments revealed that the N‐terminus tryptophan residue of BR‐II interacts with the hydrophobic core of the membrane mimicking micelles. The CD results suggest that interactions with membrane‐mimetic micelles induce an α‐helix conformation in BR‐II. We have also determined the solution structures of BR‐II in DPC and SDS micelles using NMR spectroscopy. The structural comparison of BR‐II in the presence of SDS and DPC micelles showed significant conformational changes in the residues connecting the N‐terminus and C‐terminus helices. The ability of BR‐II to bind DNA was elucidated by agarose gel retardation and fluorescence experiments. The structural differences of BR‐II in zwitterionic versus anionic membrane mimics and the DNA binding ability of BR‐II collectively contribute to the general understanding of the pharmacological specificity of this peptide towards prokaryotic and eukaryotic membranes and provide insights into its overall antimicrobial mechanism. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The study of fluorescence quenching of the fluorophores allows the localization of the alkaloids (harmane and harmine) in the micelles (SDS, CTAB, Brij-35) to be established. In aqueous micellar solutions (SDS and Brij-35) at pH 13.0, emission corresponding to the neutral or zwitterionic forms can be observed. In the presence of CTAB (pH = 13.0) it was possible to observe the emission of anionic form. These species are not present in buffered aqueous solutions at these pH values. Bromide ion was added to the different surfactant solutions and the quenching effect was studied according to the Stern-Volmer equation. In the presence of SDS the quenching effect is considerably reduced compared to the aqueous solutions without surfactants, while for Brij-35 micelles were similar to those observed in homogeneous aqueous solution. For CTAB micelles a notable fluorescence quenching was observed for the different pH values studied. The fluorescence quenching studies show that the neutral species are associated inside the micelles, instead of the ionic species (cationic, zwitterionic or anionic) remaining on the surface of the micelles. The anionic surface of SDS micelles prevents the quenching effect by anionic quenchers for both neutral and charged species.  相似文献   

4.
Melittin, a cationic hemolytic peptide, is intrinsically fluorescent due to the presence of a single functionally important tryptophan residue. We have previously shown that the sole tryptophan of melittin is localized in a motionally restricted environment in the membrane interface. We have monitored the effect of ionic strength on the organization and dynamics of membrane-bound melittin utilizing fluorescence and circular dichroism (CD) spectroscopic approaches. Our results show that red edge excitation shift (REES) of melittin bound to membranes is sensitive to the change in ionic strength of the medium. This could be attributed to a change in the immediate environment around melittin tryptophan with increasing ionic strength due to differential solvation of ions. Interestingly, the rotational mobility of melittin does not appear to be affected with change in ionic strength. In addition, fluorescence parameters such as lifetime and acrylamide quenching of melittin indicate an increase in water penetration in the membrane interface upon increasing ionic strength. Our results suggest that the solvent dynamics and water penetration in the interfacial region of the membranes are significantly affected at physiologically relevant ionic strength. These results assume significance in the overall context of the influence of ionic strength in the organization and dynamics of membrane proteins and membrane-active peptides.  相似文献   

5.
We have monitored the organization and dynamics of the hemolytic peptide melittin in membranes containing cholesterol by utilizing the intrinsic fluorescence properties of its functionally important sole tryptophan residue and circular dichroism spectroscopy. The significance of this study is based on the fact that the natural target for melittin is the erythrocyte membrane, which contains high amounts of cholesterol. Our results show that the presence of cholesterol inhibits melittin-induced leakage of lipid vesicles and the extent of inhibition appears to be dependent on the concentration of membrane cholesterol. The presence of cholesterol is also shown to reduce binding of melittin to membranes. Our results show that fluorescence parameters such as intensity, emission maximum, and lifetime of membrane-bound melittin indicate a change in polarity in the immediate vicinity of the tryptophan residue probably due to increased water penetration in presence of cholesterol. This is supported by results from fluorescence quenching experiments using acrylamide as the quencher. Membrane penetration depth analysis by the parallax method shows that the melittin tryptophan is localized at a relatively shallow depth in membranes containing cholesterol. Analysis of energy transfer results using melittin tryptophan (donor) and dehydroergosterol (acceptor) indicates that dehydroergosterol is not randomly distributed and is preferentially localized around the tryptophan residue of membrane-bound melittin, even at the low concentrations used. Taken together, our results are relevant in understanding the interaction of melittin with membranes in general, and with cholesterol-containing membranes in particular, with possible relevance to its interaction with the erythrocyte membrane.  相似文献   

6.
The interaction of the antimicrobial drug norfloxacin (NFX) with anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethylammonium bromide (CTAB) micelles was studied using the intrinsic spectroscopic properties of NFX to obtain association constants and molecular modifications. Nonionic Tween® 20 micelles were also investigated, but the spectroscopic properties of NFX did not detect interactions with these micelles, and quenching by iodide suggested a weak association constant around 47 M?1. For SDS and CTAB, UV–Vis absorption spectroscopy, steady-state and time-resolved fluorometry were monitored as a function of surfactant concentration ranging from the premicellar to micellar region. It was found that cationic (pH 4.0) and zwitterionic NFX (pH 7.4) associate with SDS micelles, with binding constants equal to 5.4 × 103 and 1.7 × 103 M?1, respectively. Premicellar interaction slightly decreases the critical micelle concentration of SDS. Association of anionic NFX (pH 10.6) is very weak. The fluorescence spectrum and lifetime showed that SDS-associated NFX is cationic and that the heterocycle penetrates the interfacial environment of decreased polarity. Cationic CTAB micelles do not bind cationic NFX, and the association constant with zwitterionic NFX is two orders of magnitude lower than that of SDS micelles. From a pharmacological point of view, it is important that at neutral pH, NFX presented a two orders of magnitude higher affinity for anionic than for cationic sites, and did not interact significantly with nonionic or zwitterionic micelle interfaces.  相似文献   

7.
Polysialic acid (PSA) is a natural anionic polymer typically occurring on the outer surface of cell membranes. PSA is involved in cell signaling and intermolecular interactions with proteins and peptides. The antimicrobial potential of peptides is usually evaluated in model membranes consisting of lipid bilayers but devoid of either PSA or its analogs. The goal of this work was to investigate the possible effect of PSA on the structure of melittin (Mlt) and latarcins Ltc1K, Ltc2a, and the activity of these peptides with respect to model membranes. These peptides are linear cationic ones derived from the venom of bee (Mlt) and spider (both latarcins). The length of each of the peptides is 26 amino acid residues, and they all have antimicrobial activity. However, they differ with respect to conformational mobility, hydrophobic characteristics, and overall charge. In this work, using circular dichroism spectroscopy, we show that the peptides adopt an α-helical conformation upon interaction with either PSA or phospholipid liposomes formed of either zwitterionic or anionic phospholipids or their mixtures. The extent of helicity depends on the amino acid sequence and properties of the medium. Based on small angle X-ray scattering data and the analysis of the fluorescence spectrum of the Trp residue in Mlt, we conclude that the peptide forms an oligomeric complex consisting of α-helical Mlt and several PSA molecules. Both latarcins, unlike Mlt, the most hydrophobic of the peptides, interact weakly with zwitterionic liposomes. However, they bind anionic liposomes or those composed of anionic/zwitterionic lipid mixtures. Latarcin Ltc1K forms associates on liposomes composed of zwitterionic/anionic lipid mixture. The structure of the peptide associates is either disordered or of β-sheet conformation. In all other cases the studied peptides adopt predominately α-helical conformation. In addition, we demonstrate that PSA inhibits membranolytic activity of Mlt and latarcin Ltc1K. These data suggest that the peptides, due to their high conformational lability, can vary structural and amphiphilic properties in the presence of PSA. As a result, various scenarios of the interaction of the peptides with membranes, whose surface is abundant with anionic polysaccharides, can take place. This can account for difficulties in understanding the structure-functional relationships in interactions of linear cationic peptides with biological membranes.  相似文献   

8.
Complexes of melittin with detergents and phospholipids have been characterized by fluorescence, circular dichroism, ultracentrifugation, quasi-elastic light scattering and 1H nuclear magnetic resonance (NMR) experiments. By ultracentrifugation and quasi-elastic light-scattering measurements it is shown that melittin forms stoichiometrically well-defined complexes with dodecylphosphocholine micelles consisting of one melittin molecule and approximately forty detergent molecules. Evidence from fluorescence, circular dichroism and 1H nuclear magnetic resonance experiments indicates that the conformation of melittin bound to micelles of various detergents or of diheptanoyl phosphatidylcholine is largely independent of the type of lipid and furthermore appears to be quite closely related to the conformation of melittin bound to phosphatidylcholine bilayers. 1H NMR is used to investigate the conformation of micelle-bound melittin in more detail and to compare certain aspects of the melittin conformation in the micelles with the spatial structures of monomeric and self-aggregated tetrameric melittin in aqueous solution. The experience gained with this system demonstrates that high resolution NMR of complexes of membrane proteins with micelles provides a viable method for conformational studies of membrane proteins.  相似文献   

9.
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is the very first site of interactions with the antimicrobial peptides. In this work, we have determined a solution conformation of melittin, a well-known membrane active amphiphilic peptide from honey bee venom, by transferred nuclear Overhauser effect (Tr-NOE) spectroscopy in its bound state with lipopolysaccharide. The LPS bound conformation of melittin is characterized by a helical structure restricted only to the C-terminus region (residues A15-R24) of the molecule. Saturation transfer difference (STD) NMR studies reveal that several C-terminal residues of melittin including Trp19 are in close proximity with LPS. Isothermal titration calorimetry (ITC) data demonstrates that melittin binding to LPS or lipid A is an endothermic process. The interaction between melittin and lipid A is further characterized by an equilibrium association constant (Ka) of 2.85 x 10(6) M(-1) and a stoichiometry of 0.80, melittin/lipid A. The estimated free energy of binding (delta G0), -8.8 kcal mol(-1), obtained from ITC experiments correlates well with a partial helical structure of melittin in complex with LPS. Moreover, a synthetic peptide fragment, residues L13-Q26 or mel-C, derived from the C-terminus of melittin has been found to contain comparable outer membrane permeabilizing activity against Escherichia coli cells. Intrinsic tryptophan fluorescence experiments of melittin and mel-C demonstrate very similar emission maxima and quenching in presence of LPS micelles. The Red Edge Excitation Shift (REES) studies of tryptophan residue indicate that both peptides are located in very similar environment in complex with LPS. Collectively, these results suggest that a helical conformation of melittin, at its C-terminus, could be an important element in recognition of LPS in the outer membrane.  相似文献   

10.
Two transmembrane peptides encompassing the seventh transmembrane section of subunit a from V-ATPase from Saccharomyces cerevisiae were studied as complexes with APols A8-35 by CD and fluorescence spectroscopy, with the goal to use APols to provide a membrane-mimicking environment for the peptides. CD spectroscopy was used to obtain the overall secondary structure of the peptides, whereas fluorescence spectroscopy provided information about the local environment of their tryptophan residues. The fluorescence results indicate that both peptides are trapped by APols and the CD results that they adopt a beta-sheet conformation. This result is in contrast with previous work that showed that the same peptides are alpha-helical in SDS micelles and organic solvents. These observations are discussed in the context of APol physical-chemical properties and transmembrane peptide structural propensity.  相似文献   

11.
Naeem A  Fatima S  Khan RH 《Biopolymers》2006,83(1):1-10
A systematic investigation of the effects of detergents [Sodium dodecyl sulphate (SDS), hexa decyltrimethyl ammonium bromide (CTAB) and Tween-20] on the structure of acid-unfolded papain (EC.3.4.22.2) was made using circular dichroism (CD), intrinsic tryptophan fluorescence, and 1-anilino 8-sulfonic acid (ANS) binding. At pH 2, papain exhibits a substantial amount of secondary structure and is relatively less denatured compared with 6 M GdnHCl (guanidine hydrochloride) but loses the persistent tertiary contacts of the native state. Addition of detergents caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity value at 208 and 222 nm. Near-UV CD spectra also showed the regain of native-like spectral features in the presence of 8 mM SDS and 3.5 mM CTAB. Induction of structure in acid-unfolded papain was greater in the presence SDS followed by CTAB and Tween-20. Intrinsic tryptophan fluorescence studies indicate the change in the environment of tryptophan residues upon addition of detergents to acid-unfolded papain. Addition of 8 mM SDS resulted in the loss of ANS binding sites exhibited by a decrease in ANS fluorescence intensity, suggesting the burial of hydrophobic patches. Maximum ANS binding was obtained in the presence of 0.1 mM Tween-20 followed by CTAB, indicating a compact "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acid-unfolded papain in the presence of detergents showed the partial recovery of enzymatic activity. These results suggest that papain at low pH and in the presence of SDS exists in a partially folded state characterized by native-like secondary structure and tertiary folds. While in the presence of Tween, acid-unfolded papain exists as a compact intermediate with molten-globule-like characteristics, viz. enhanced hydrophobic surface area and retention of secondary structure. While in the presence of CTAB it exists as a compact intermediate with regain of native-like secondary and partial tertiary structure as well as high ANS binding with the partially recovered enzymatic activity, i.e., a molten globule state with tertiary folds.  相似文献   

12.
The binding, conformation and orientation of a hydrophilic vector peptide penetratin in lipid membranes and its state of self-association in solution were examined using circular dichroism (CD), analytical ultracentrifugation and fluorescence spectroscopy. In aqueous solution, penetratin exhibited a low helicity and sedimented as a monomer in the concentration range approximately 50-500 microM. The partitioning of penetratin into phospholipid vesicles was determined using tryptophan fluorescence anisotropy titrations. The apparent penetratin affinity for 20% phosphatidylserine/80% egg phosphatidylcholine vesicles was inversely related to the total peptide concentration implying repulsive peptide-peptide interactions on the lipid surface. The circular dichroism spectra of the peptide when bound to unaligned 20% phosphatidylserine/80% egg phosphatidylcholine vesicles and aligned hydrated phospholipid multilayers were attributed to the presence of both alpha-helical and beta-turn structures. The orientation of the secondary structural elements was determined using oriented circular dichroism spectroscopy. From the known circular dichroism tensor components of the alpha-helix, it can be concluded that the orientation of the helical structures is predominantly perpendicular to the membrane surface, while that of the beta-type carbonyls is parallel to the membrane surface. On the basis of our observations, we propose a novel model for penetratin translocation.  相似文献   

13.
The conformation of substance P in lipid environments.   总被引:3,自引:1,他引:2       下载免费PDF全文
NMR and CD studies have been used to analyze the model membrane-bound structure of the neuropeptide substance P (RPKPQQFFGLM-NH2, SP), which has previously been proposed as the NK1 receptor active form. Conformations were determined for the SP in the presence of aqueous solutions of zwitterionic dodecylphosphocholine (DPC) and anionic sodium dodecylsulfate (SDS) micelles. The two structures are similar, although fast exchange between free and bound forms was observed for SP with DPC micelles, and predominantly bound characteristics were found for SP in SDS. The addition of 150-200 mM NaCl had no observable effect on the bound conformation in either case. Thus, the structure of SP at a micelle surface is determined largely by hydrophobic forces, and the electrostatic interactions determine the amount of SP that is bound.  相似文献   

14.
The structure and dynamics of synthetic melittin (MLT) and MLT analogues bound to monomyristoylphosphatidylcholine micelles, dimyristoylphosphatidylcholine vesicles, and diacylphosphatidylcholine films have been investigated by fluorescence, CD, attenuated total reflectance (ATR) FTIR, and 13C NMR spectroscopy. All of these methods provide information about peptide secondary structure and/or about the environment of the single tryptophan side chain in these lipid environments. ATR-FTIR data provide additional information about the orientation of helical peptide segments with respect to the bilayer plane. Steady-state fluorescence anisotropy, fluorescence lifetime, and 13C NMR relaxation data are used in concert to provide quantitative information about the dynamics of a single 13C-labeled tryptophan side chain at position 19 in lipid-bound MLT, and at positions 17, 11, and 9, respectively, in lipid-bound MLT analogues. Peptide chain dynamics are probed by NMR relaxation studies of 13C alpha-labeled glycine incorporated into each of the MLT peptides at position 12. The cumulative structural and dynamic data are consistent with a model wherein the N-terminal alpha-helical segment of these peptides is oriented perpendicular to the bilayer plane. Correlation times for the lysolipid-peptide complexes provide evidence for binding of a single peptide monomer per micelle. A model for the membranolytic action of MLT and MLT-like peptides is proposed.  相似文献   

15.
The dynamical fluorescence properties of the sole tryptophan residue (Trp-140) in Staphylococcus aureus nuclease (EC 3.1.31.1) have been investigated in aqueous solution and reversed micelles composed of either sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane or cetyltrimethylammonium chloride (CTAC) in isooctane/hexanol (12:1 by volume). The fluorescence decay of nuclease in the different environments can be described by a trimodal distribution of fluorescence lifetimes at approx. 0.5, 1.5 and 5.0 ns. The relative amplitudes depend on the environment. For pH 9.0 solutions the contribution of the two shortest lifetime components in the distribution is largest for AOT and smallest for CTAC reversed micelles. There is reasonable agreement between the average fluorescence lifetime and the fluorescence quantum efficiency confirming a significant fluorescence quenching in AOT reversed micelles. Fluorescence anisotropy decay revealed that the tryptophan environment in aqueous nuclease solutions is rigid on a nanosecond timescale. When nuclease was entrapped into reversed micelles the tryptophan gained some internal flexibility as judged from the distinct presence of a shorter correlation time. The longer correlation time reflected the rotational properties of the protein-micellar system. Modulation of the overall charge of nuclease (isoelectric point pH 9.6) by using buffer of pH 9.0 and pH 10.4, respectively, and of the size of empty micelles by selecting two values of the water to surfactant molar ratio, had only a minor effect on the rotational properties of nuclease in the positively charged reversed micelles. Encapsulation of nuclease in anionic reversed micelles resulted in the development of protein bound to aggregated structures which are immobilised on a nanosecond timescale. According to far UV vircular dichroism results the secondary structure of nuclease only followed the already published pH-dependent changes. Encapsulation had no major effect on the overall secondary structure.  相似文献   

16.
Circular Dichroism (CD), isothermal calorimetry (ITC) and calcein fluorescence leakage experiments were conducted to provide insight into the mechanisms of binding of a series of antimicrobial peptides containing unnatural amino acids (Ac-XF-Tic-Oic-XK-Tic-Oic-XF-Tic-Oic-XK-Tic-KKKK-CONH2) to zwitterionic and anionic micelles, SUVs and LUVs; where X (Spacer# 1) is either Gly, β-Ala, Gaba or 6-aminohexanoic acid. It is the intent of this investigation to correlate these interactions with the observed potency and selectivity against several different strains of bacteria. The CD spectra of these compounds in the presence of zwitterionic DPC micelles and anionic SDS micelles are very different indicating that these compounds adopt different conformations on binding to the surface of anionic and zwitterionic membrane models. These compounds also exhibited very different CD spectra in the presence of zwitterionic POPC and anionic mixed 4:1 POPC/POPG SUVs and LUVs, indicating the formation of different conformations on interaction with the two membrane types. This observation is also supported by ITC and calcein leakage data. ITC data suggested these peptides interact primarily with the surface of zwitterionic LUVs and was further supported by fluorescence experiments where the interactions do not appear to be concentration dependent. In the presence of anionic membranes, the interactions appear more complex and the calorimetric and fluorescence data both imply pore formation is dependent on peptide concentration. Furthermore, evidence suggests that as the length of Spacer# 1 increases the mechanism of pore formation also changes. Based on the observed differences in the mechanisms of interactions with zwitterionic and anionic LUVs these AMPs are potential candidates for further drug development.  相似文献   

17.
The interaction of bee venom melittin with erythrocyte membrane ghosts has been investigated by means of fluorescence quenching of membrane tryptophan residues, fluorescence polarization and ESR spectroscopy. It has been revealed that melittin induces the disorders in lipid-protein matrix both in the hydrophobic core of bilayer and at the polar/non-polar interface of melittin complexed with erythrocyte membranes. The peptide has been found to act most efficiently at the concentration of the order of 10(-10) mol/mg membrane protein. The apparent distance separating the membrane tryptophan and bound 1-anilino-8-naphthalenesulphonate (ANS) molecules is decreased upon melittin binding, which results in a significant increase of the maximum energy transfer efficiency. Significant changes in the fluorescence anisotropy of both 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalenesulphonate bound to erythrocyte ghosts, which have been observed in the presence of melittin and crude venom, indicate membrane lipid bilayer rigidization. The effect of crude honey bee venom has been found to be of similar magnitude as the effect of pure melittin at the concentration of 10(-10) mol/mg membrane protein. Using two lipophilic spin labels, methyl 5-doxylpalmitate and 16-doxylstearic acid, we found that melittin at its increasing concentrations induces a well marked rigidization in the deeper regions of lipid bilayer, whereas the effect of rigidization near the membrane surface maximizes at the melittin concentration of 10(-10) mol/mg (10(-4) mol melittin per mole of membrane phospholipid). The decrease in the ratio hw/hs of maleimide and the rise in relative rotational correlation time (tau c) of iodacetamid spin label, indicate that melittin effectively immobilizes membrane proteins in the plane of the lipid bilayer. We conclude that melittin-induced rigidization of the lipid bilayer may induce a reorganization of lipid assemblies as well as the rearrangements in membrane protein pattern and consequently the alterations in lipid-protein interactions. Thus, the interaction of melittin with erythrocyte membranes is supposed to produce local conformational changes in membranes, which are discussed in the connection with their significance during the synergistic action of melittin and phospholipase of bee venom on red blood cells.  相似文献   

18.
Assignments have been obtained for most of the 1H-NMR lines of melittin bound to fully deuterated dodecylphosphocholine micelles by combined use of two-dimensional spin echo correlated spectroscopy and one-dimensional NMR methods. Nuclear Overhauser enhancement measurements showed that the mobility of the entire polypeptide chain is reduced by binding of melittin to the detergent micelle and that the amino-terminal and carboxy-terminal halves of the primary structure constitute separate, compact domains within the conformation of micelle-bound melittin. p2H titration experiments showed that the presence of positive charges on the four amino groups of melittin had little influence on the conformation of the micelle-bound polypeptide. Titration of tetrameric melittin with detergent provided evidence that melittin assumes similar conformations as a self-aggregated tetramer and as a monomer bound to micelles.  相似文献   

19.
A new circular dichroism (CD) technique is presented which quantifies, in situ, the changes in protein and peptide secondary structure upon adsorption at the quartz/liquid interface. Far-UV CD spectra of adsorbed proteins were recorded from several quartz interfaces contained in a specially constructed cell. Adsorbed, oriented alpha-helical spectra were recorded from hydrophilic and hydrophobic quartz using the bee venom peptide, melittin, which can be induced into an alpha-helical, tetrameric conformation in solution. The hydrophobic quartz provides a model system for oil-in-water emulsions and cell membranes. Surface concentrations were determined by radio-counting and were dependent on the nature of the surface. The characterization of these spectra has been partly achieved using far-UV CD spectra obtained from melittin adsorbed onto hydrophilic colloidal silica particles, where orientation effects are eliminated. Analysis of these spectra reveals considerable denaturation of the helical structures upon adsorption. Surface concentrations from the silica were determined from adsorption isotherms. The surface orientation of adsorbed melittin was dependent on the state of aggregation and hence degree of helicity of the molecule. These results support a model for the mode of action of melittin in lysing membranes.  相似文献   

20.
We studied the interaction of the peptide AAMQMLKETINEEAAEWDRVHPVHAGPIA from the HIV-1 p24 protein in the presence of SDS (anionic) and CTABr (cationic) micelles at pH 7.0 by circular dichroism, fluorescence, and electron spin resonance (ESR). The micelles induced secondary structure as well as a blue shift in the tryptophan fluorescence emission, indicating an interaction between the peptide and the micelles. However, different contents of secondary structure elements were found when the peptide interacts with SDS or CTABr micelles. Steady-state anisotropy indicates a constraint on the rotational mobility of the tryptophan residue of the peptide upon interaction with micelles. ESR studies pointed to different locations for the peptide in either micelle. Our results suggested that at least part of the peptide might be located at the hydrophobic core of the CTABr micelles, probably at the C-terminal region, while it is more inserted into the SDS micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号