首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.  相似文献   

2.
The rate of cellulose digestion in the presence of either glucose or cellobiose was studied for the three predominant species of cellulolytic rumen bacteria: Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes. When a soluble carbohydrate was added to cellulose broth, the lag phase of cellulose digestion was shortened. Presumably, this was due to greater numbers of bacteria, because increasing the size of the inoculum had a similar effect. Cellulose digestion occurred simultaneously with utilization of the soluble carbohydrate. The rate of cellulose digestion slowed markedly for B. succinogenes and R. flavefaciens and slowed less for R. albus after the cellobiose or glucose had been utilized, and was accompanied by a decrease in pH. Both the rate and the extent of cellulose digestion were partially inhibited when the initial pH of the medium was 6.3 or below. R. albus appeared to be less affected by a low-pH medium than were B. succinogenes and R. flavefaciens. When a soluble carbohydrate was added to the fermentation during the maximum-rate phase of cellulose digestion, the rate of cellulose digestion was not affected until after the soluble carbohydrate had been depleted and the pH had decreased markedly. Prolonged exposure of the bacteria to a low pH had little if any effect on their subsequent ability to digest cellulose. Cellulase activity of intact bacterial cells appeared to be constitutive in nature for these three species of rumen bacteria.  相似文献   

3.
The rate of cellulose digestion in the presence of either glucose or cellobiose was studied for the three predominant species of cellulolytic rumen bacteria: Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes. When a soluble carbohydrate was added to cellulose broth, the lag phase of cellulose digestion was shortened. Presumably, this was due to greater numbers of bacteria, because increasing the size of the inoculum had a similar effect. Cellulose digestion occurred simultaneously with utilization of the soluble carbohydrate. The rate of cellulose digestion slowed markedly for B. succinogenes and R. flavefaciens and slowed less for R. albus after the cellobiose or glucose had been utilized, and was accompanied by a decrease in pH. Both the rate and the extent of cellulose digestion were partially inhibited when the initial pH of the medium was 6.3 or below. R. albus appeared to be less affected by a low-pH medium than were B. succinogenes and R. flavefaciens. When a soluble carbohydrate was added to the fermentation during the maximum-rate phase of cellulose digestion, the rate of cellulose digestion was not affected until after the soluble carbohydrate had been depleted and the pH had decreased markedly. Prolonged exposure of the bacteria to a low pH had little if any effect on their subsequent ability to digest cellulose. Cellulase activity of intact bacterial cells appeared to be constitutive in nature for these three species of rumen bacteria.  相似文献   

4.
Selenomonas ruminantium strains were isolated from sheep rumen, and their significance for fiber digestion was evaluated. Based on the phylogenetic classification, two clades of S. ruminantium (clades I and II) were proposed. Clade II is newly found, as it comprised only new isolates that were phylogenetically distant from the type strain, while all of the known isolates were grouped in the major clade I. More than half of clade I isolates displayed CMCase activity with no relation to the degree of bacterial adherence to fibers. Although none of the isolates digested fiber in monoculture, they stimulated fiber digestion when co-cultured with Fibrobacter succinogenes, and there was an enhancement of propionate production. The extent of such synergy depended on the clade, with higher digestion observed by co-culture of clade I isolates with F. succinogenes than by co-culture with clade II isolates. Quantitative PCR analysis showed that bacterial abundance in the rumen was higher for clade I than for clade II. These results suggest that S. ruminantium, in particular the major clade I, is involved in rumen fiber digestion by cooperating with F. succinogenes.  相似文献   

5.
Fibrobacter succinogenes is one of the most active cellulolytic bacteria ever isolated from the rumen, but enzymes from F. succinogenes capable of hydrolyzing native (insoluble) cellulose at a rapid rate have not been identified. However, the genome sequence of F. succinogenes is now available, and it was hoped that this information would yield new insights into the mechanism of cellulose digestion. The genome has a single family 45 beta-glucanase gene, and some of the enzymes in this family have good activity against native cellulose. The gene encoding the family 45 glycosyl hydrolase from F. succinogenes S85 was cloned into Escherichia coli JM109(DE3) using pMAL-c2 as a vector. Recombinant E. coli cells produced a soluble fusion protein (MAL-F45) that was purified on a maltose affinity column and characterized. MAL-F45 was most active on carboxymethylcellulose between pH 6 and 7 and it hydrolyzed cellopentaose and cellohexaose but not cellotetraose. It also cleaved p-nitrophenyl-cellopentose into cellotriose and p-nitrophenyl-cellobiose. MAL-F45 produced cellobiose, cellotriose and cellotetraose from acid swollen cellulose and bacterial cellulose, but the rate of this hydrolysis was much too low to explain the rate of cellulose digestion by growing cultures. Because the F. succinogenes S85 genome lacks dockerin and cohesin sequences, does not encode any known processive cellulases, and most of its endoglucanase genes do not encode carbohydrate binding modules, it appears that F. succinogenes has a novel mechanism of cellulose degradation.  相似文献   

6.
Characterization of rat cecum cellulolytic bacteria.   总被引:10,自引:8,他引:2       下载免费PDF全文
Cellulose-degrading bacteria previously isolated from the ceca of rats have been characterized and identified. The most commonly isolated type was rods identified as Bacteroides succinogenes. These bacteria fermented only cellulose (e.g., pebble-milled Whatman no. 1 filter paper), cellobiose, and in 43 of 47 strains, glucose, with succinic and acetic acids as the major products. The only organic growth factors found to be required by selected strains were p-aminobenzoic acid, cyanocobalamine, thiamine, and a straight-chain and a branched-chain volatile fatty acid. These vitamin requirements differ from those of rumen strains of B. succinogenes, indicating the rat strains may form a distinct subgroup within the species. The mole percent guanine plus cytosine was 45%, a value lower than those (48 to 51%) found for three rumen strains of B. succinogenes included in this study. Cellulolytic cocci were isolated less frequently than the rods and were identified as Rumminococcus flavefaciens. Most strains fermented only cellulose and cellobiose, and their major fermentation products were also succinic and acetic acids. Their required growth factors were not identified but were supplied by rumen fluid.  相似文献   

7.
A metabolite of Trichoderma hamatum, 3-(3-isocyanocyclopent-2-enylidene)propionic acid, was tested for its effects on growth of and carbohydrate metabolism in 11 strains of functionally important rumen bacteria. To standardize the biological activity of this unstable metabolite, a rapid, aerobic disc diffusion assay was developed using Escherichia coli ATCC 11775. In an anaerobic broth dilution assay using a medium lacking rumen fluid and containing a soluble carbohydrate, the minimum inhibitory concentration of the metabolite which completely inhibited growth of the rumen bacteria for 18 h at 39 degrees C was generally less than 10 micrograms X mL-1; however, the minimum inhibitory concentrations for Megasphaera elsdenii B159 and Streptococcus bovis Pe(1)8 were 10-25 and 25-64 micrograms X mL-1, respectively. In general, the Gram-negative strains were more sensitive than the Gram positive. The minimum inhibitory concentration for Bacteroides ruminicola 23 grown with glucose was 1 micrograms X mL-1; for B. ruminicola GA33 (glucose), B. succinogenes S85 (cellobiose), and Succinivibrio dextrinosolvens 24 (maltose), it was 2 microgram X mL-1. When added to a cellulose-containing rumen fluid medium, 1-4 micrograms X mL-1 of the metabolite delayed cellulose hydrolysis by B. succinogenes S85, Ruminococcus albus 7, and R. flavefaciens FD1 for up to 4 days, and 6-7 micrograms X mL-1 prevented hydrolysis for at least 1 month. In the presence of the metabolite, the proportion of acetate produced from soluble carbohydrate by the majority of strains increased, but with some strains net production of acetate decreased relative to production of other acidic fermentation products.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Succinate is formed as an intermediate but not as a normal end product of the bovine rumen fermentation. However, numerous rumen bacteria are present, e.g., Bacteroides succinogenes, which produce succinate as a major product of carbohydrate fermentation. Selenomonas ruminantium, another rumen species, produces propionate via the succinate or randomizing pathway. These two organisms were co-cultured to determine if S. ruminantium could decarboxylate succinate produced by B. succinogenes. When energy sources used competitively by both species, i.e. glucose or cellobiose, were employed, no succinate was found in combined cultures, although a significant amount was expected from the numbers of Bacteroides present. The propionate production per S. ruminantium was significantly greater in combined than in single S. ruminantium cultures, which indicated that S. ruminantium was decarboxylating the succinate produced by B. succinogenes. S. ruminantium, which does not use cellulose, grew on cellulose when co-cultured with B. succinogenes. Succinate, but not propionate, was produced from cellulose by B. succinogenes alone. Propionate, but no succinate, accumulated when the combined cultures were grown on cellulose. These interspecies interactions are models for the rumen ecosystem interactions involved in the production of succinate by one species and its decarboxylation to propionate by a second species.  相似文献   

9.
Fibrobacter succinogenes S85, a cellulolytic rumen bacterium, is very efficient in degrading lignocellulosic substrates and could be used to develop a biotechnological process for the treatment of wastes. In this work, the metabolism of cellulose by F. succinogenes S85 was investigated using in vivo 13C NMR and 13C-filtered spin-echo difference 1H NMR spectroscopy. The degradation of unlabelled cellulose synthesised by Acetobacter xylinum was studied indirectly, in the presence of [1-13C]glucose, by estimating the isotopic dilution of the final bacterial fermentation products (glycogen, succinate, acetate). During the pre-incubation period of F. succinogenes cells with cellulose fibres, some cells ('non-adherent') did not attach to the solid material. Results for 'adherent' cells showed that about one fourth of the glucose units entering F. succinogenes metabolism originated from cellulose degradation. A huge reversal of succinate metabolism pathway and production of large amounts of unlabelled acetate which was observed during incubation with glucose only, was found to be much decreased in the presence of solid substrate. The synthesis of glucose 6-phophate was slightly increased in the presence of cellulose. Results clearly showed that 'non-adherent' cells were able to metabolise glucose very efficiently; consequently the metabolic state of these cells was not responsible for their 'non-adherence' to cellulose fibre.  相似文献   

10.
Ultrastructure and adhesion properties of Ruminococcus albus.   总被引:21,自引:3,他引:18       下载免费PDF全文
Morphological studies have shown that cells of the anaerobic rumen bacterium Ruminococcus albus have electron-translucent granules of reserve carbohydrate in their cytoplasm, and that they have a polysaccharide "coat" layer external to their gram-negative cell wall. This coat layer, which stains specifically with ruthenium red, forms a compact mat of fibers adjacent to the cell, and fibrous elements also project as much as 0.6 mum from the cells. These radial fibers are clearly visualized by freeze-etching, and can be seen to extend throughout the extensive intercullular space in centrifuged pellets of these bacteria. Cells of R. albus adhere to cellulose fibers added to the culture medium, and the coat material is seen to mediate this adhesion in addition to its function in the general protection of these cells.  相似文献   

11.
Two predominant rumen cellulolytic bacteria, Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85, were incubated with ground filter paper (Whatman no. 1), cattle manure fiber, wheat straw, Kentucky bluegrass, alfalfa, and corn silage as substrates. Analyses of the initial substrate and the recovered residue after 48 h of static incubation showed that R. flavefaciens C94 was quantitatively more effective than B. succinogenes S85 in degrading total dry matter (32.3% versus 16.1%). However, B. succinogenes S85 demonstrated a qualitative advantage in degrading the hemicellulose and hemicellulosic sugars of particular substrates. R. flavefaciens degraded a mean 29.7% of the cellulose and 35.6% of the hemicellulose in the various substrates, whereas B. succinogenes degraded a mean 17.9 and 31.6% of these fractions, respectively. Gas-liquid chromatography was an important aid in characterizing the polysaccharide-degrading capabilities of these rumen species.  相似文献   

12.
Fiber-degrading systems of different strains of the genus Fibrobacter   总被引:1,自引:0,他引:1  
The S85 type strain of Fibrobacter succinogenes, a major ruminal fibrolytic species, was isolated 49 years ago from a bovine rumen and has been used since then as a model for extensive studies. To assess the validity of this model, we compared the cellulase- and xylanase-degrading activities of several other F. succinogenes strains originating from different ruminants, including recently isolated strains, and looked for the presence of 10 glycoside hydrolase genes previously identified in S85. The NR9 F. intestinalis type strain, representative of the second species of the genus, was also included in this study. DNA-DNA hybridization and 16S rRNA gene sequencing first classified the strains and provided the phylogenetic positions of isolates of both species. Cellulase and xylanase activity analyses revealed similar activity profiles for all F. succinogenes strains. However, the F(E) strain, phylogenetically close to S85, presented a poor xylanolytic system and weak specific activities. Furthermore, the HM2 strain, genetically distant from the other F. succinogenes isolates, displayed a larger cellulolytic profile on zymograms and higher cellulolytic specific activity. F. intestinalis NR9 presented a higher cellulolytic specific activity and a stronger extracellular xylanolytic activity. Almost all glycoside hydrolase genes studied were found in the F. succinogenes isolates by PCR, except in the HM2 strain, and few of them were detected in F. intestinalis NR9. As expected, the fibrolytic genes of strains of the genus Fibrobacter as well as the cellulase and xylanase activities are better conserved in closely related phylogenetic isolates.  相似文献   

13.
By combining analyses of G + C content and patterns of codon usage and constructing phylogenetic trees, we describe the gene transfer of an endoglucanase (celA) from the rumen bacteria Fibrobacter succinogenes to the rumen fungi Orpinomyces joyonii. The strong similarity between different glycosyl hydrolases of rumen fungi and bacteria suggests that most, if not all, of the glycosyl hydrolases of rumen fungi that play an important role in the degradation of cellulose and other plant polysaccharides were acquired by horizontal gene transfer events. This acquisition allows fungi to establish a habitat within a new environmental niche: the rumen of the herbivorous mammals for which cellulose and plant hemicellulose constitute the main raw nutritive substrate.  相似文献   

14.
Cicer milkvetch (Astragalus cicer L.) is a perennial legume used as a pasture or rangeland plant for ruminants. A study was undertaken to determine whether reported variations in its ruminal digestibility may be related to the presence of an antinutritive material. In vitro fermentation of neutral detergent fiber (NDF) of cicer milkvetch by mixed rumen microflora was poorer than was the fermentation of NDF in alfalfa (Medicago sativa L.). Fermentation of cicer milkvetch NDF was improved by preextraction of the ground herbage with water for 3 h at 39 degrees C. Such water extracts selectively inhibited in vitro fermentation of pure cellulose by mixed ruminal microflora and by pure cultures of the ruminal bacteria Ruminococcus flavefaciens FD-1 and Fibrobacter succinogenes S85. Inhibition of the cellulose fermentation by mixed ruminal microflora was dependent upon the concentration of cicer milkvetch extract and was overcome upon prolonged incubation. Pure cultures exposed to the extract did not recover from inhibition, even after long incubation times, unless the inhibitory agent was removed (viz., by dilution of inhibited cultures into fresh medium). The extract did not affect the fermentation of cellobiose by R. flavefaciens but did cause some inhibition of cellobiose fermentation by F. succinogenes. Moreover, the extracts did not inhibit hydrolysis of crystalline cellulose, carboxymethyl cellulose, or p-nitrophenylcellobioside by supernatants of these pure cultures of cellulolytic bacteria or by a commercial cellulase preparation from the fungus Trichoderma reesei. The agent caused cellulose-adherent cells to detach from cellulose fibers, suggesting that the agent may act, at least in part, by disrupting the glycocalyx necessary for adherence to, and rapid digestion of, cellulose.  相似文献   

15.
The lag of ≈ 10 hours in the onset of digestion of cotton cellulose in the rumen, observed by previous workers, has been confirmed. The molecular weight of the remaining cotton decreases only slowly during digestion, and the polysaccharide retains its fibrous form. The crystallinity decreases slightly at the same time, and it is concluded that the amorphous and crystalline regions of cellulose are attacked at approximately the same rate. The hemicelluloses of grass partly digested in the rumen and of faeces fibre have been isolated and found by viscometry to have molecular weights similar to those of the material isolated from the original grass. This finding confirms earlier conclusions that the digestion-resistant hemicelluloses are chemically identical with the digestible hemicelluloses and that the resistance is due to protection by lignin. The holocellulose prepared from faeces fibre by removal of lignin showed slightly less X-ray crystallinity than that from the original grass, but this effect is probably due to a decrease in cellulose-hemicellulose ratio during passage through the animal, rather than to preferential digestion of crystalline cellulose. A comparison of the chemical composition of the polysaccharides of grass and faeces fibre confirms that cellulose is digested more rapidly and completely than hemicelluloses, presumably because it is less effectectively protected by lignin. In the corresponding holocclluloses, however, where the lignin has been removed, the cellulose and hemicelluloses are digested at about the same rate.  相似文献   

16.
The sorption of anionic polysaccharides pectin, alginate, and xanthan with cellulose were investigated in presence of calcium. Calcium sorption to cellulose was limited by the carboxyl group content in fibers. Atomic Absorption Spectroscopy (AAS) analysis was used to measure the calcium in cellulose fibers and chemical oxygen demand (COD) analysis reveals that the divalent ions calcium can bind the polysaccharide onto cellulose fibers. The amount of calcium and polysaccharide bound in Ca2+/polysaccharide modified cellulose fibers was 5.8-12.5 mM Ca2+/kg fibers and 1500-2400 mg polysaccharide/kg fibers, respectively. Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (FTIR-ATR) analysis confirmed the presence of polysaccharide on calcium containing cellulose fibers. The results of alizarin dyeing experiments at the end of polysaccharide sorption further confirmed the presence of calcium in Ca2+/polysaccharide modified cellulose fibers. The basic phenomenon of interaction of soluble ionic polysaccharide and cellulosic fibers in presence of divalent cations such as calcium is a key to understand biological functions and technological applications.  相似文献   

17.
Cell Envelope Morphology of Rumen Bacteria   总被引:26,自引:7,他引:19  
The cell walls of three species of rumen bacteria (Bacteroides ruminicola, Bacteroides succinogenes, and Megasphaera elsdenii) were studied by a variety of morphological methods. Although all the cells studied were gram-negative and had typical cytoplasmic membranes and outer membranes, great variation was observed in the thickness of their peptidoglycan layers. Megasphaera elsdenii evidenced a phenomenally thick peptidoglycan layer whose participation in septum formation was very clearly seen. All species studied have cell wall "coats" external to the outer membrane. The coat of Bacteroides ruminicola is composed of large (approximately 20 nm) globules that resemble the protein coats of other organisms, whereas the coat of Bacteroides succinogenes is a thin and irregular carbohydrate coat structure. Megasphaera elsdenii displays a very thick fibrillar carbohydrate coat that varies in thickness with the age of the cells. Because of the universality of extracellular coats among rumen bacteria we conclude that the production of these structures is a protective adaptation to life in this particular, highly competitive, environment.  相似文献   

18.
Three human isolates of Vibrio succinogenes produced asparaginase. Apparent Km's were 87,220, and 320 microM. The rate of glutamine hydrolysis was between 2.8 and 3.5% of the rate of asparagine hydrolysis. Asparaginase production was not induced by ammonium ions, and enzyme yields were lower than those obtained with the rumen strain.  相似文献   

19.
Three human isolates of Vibrio succinogenes produced asparaginase. Apparent Km's were 87,220, and 320 microM. The rate of glutamine hydrolysis was between 2.8 and 3.5% of the rate of asparagine hydrolysis. Asparaginase production was not induced by ammonium ions, and enzyme yields were lower than those obtained with the rumen strain.  相似文献   

20.
Natural cellulose fibers have been obtained from the bark of cotton stalks and the fibers have been used to develop composites. Cotton stalks are rich in cellulose and account for up to 3 times the quantity of cotton fiber produced per acre. Currently, cotton stalks have limited use and are mostly burned on the ground. Natural cellulose fibers obtained from cotton stalks are composed of approximately 79% cellulose and 13.7% lignin. The fibers have breaking tenacity of 2.9 g per denier and breaking elongation of 3% and modulus of 144 g per denier, between that of cotton and linen. Polypropylene composites reinforced with cotton stalk fibers have flexural, tensile and impact resistance properties similar to jute fiber reinforced polypropylene composites. Utilizing cotton stalks as a source for natural cellulose fibers provides an opportunity to increase the income from cotton crops and make cotton crops more competitive to the biofuel crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号