首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
For the quantification of nitrite and nitrate, the stable metabolites of -arginine-derived nitric oxide (NO) in human urine and plasma, we developed a gas chromatographic—mass spectrometric (GC—MS) method in which [15N]nitrite and [15N]nitrate were used as internal standards. Endogenous nitrite and [15N]nitrite added to acetone-treated plasma and urine samples were converted into their pentafluorobenzyl (PFB) derivatives using PFB bromide as the alkylating agent. For the analysis of endogenous nitrate and [15N]nitrate they were reduced to nitrite and [15N]nitrite, respectively, by cadmium in acidified plasma and urine samples prior to PFB alkylation. Reaction products were extracted with toluene and 1-μl aliquots were analyzed by selected-ion monitoring at m/z 46 for endogenous nitrite (nitrate) and m/z 47 for [15N]nitrite ([15N]nitrate). The intra- and inter-assay relative standard deviations for the determination of nitrite and nitrate in urine and plasma were below 3.8%. The detection limit of the method was 22 fmol of nitrite. Healthy subjects (n = 12) excreted into urine 0.49 ± 0.25 of nitrite and 109.5 ± 61.7 of nitrate (mean ± S.D., μmol/mmol creatinine) with a mean 24-h output of 5.7 μmol for nitrite and 1226 μmol for nitrate. The concentrations of nitrite and nitrate in the plasma of these volunteers were determined to be (mean ± S.D., μmol/l) 3.6 ± 0.8 and 68 ± 17, respectively.  相似文献   

2.
Eleven diphenylmethane antihistaminic drugs and their analogues were tested for their detection by capillary gas chromatography (GC) with surface ionization detection (SID). The GC—SID response was highest for doxylamine, diphenhydramine and orphenadrine and lowest for terodiline, clemastine and pipethanate. The detection limits for drugs with the highest response were 2–5 pg (ca. 6–20 fmol) on-column (100–250 pg/ml of body fluid). The detection limits with GC—SID were 10–100 times higher than those with GC with nitrogen—phosphorus detection. A detailed procedure for the isolation of the antihistaminics from human whole blood and urine by the use of Sep-Pak C18 cartridges, prior to GC—SID, is also presented. The recoveries of the drugs (50 or 500 pmol), which had been added to 1 ml of body fluids, were>60%. The baselines remained steady as the column temperature was increased and the background was clean, especially for whole blood extracts.  相似文献   

3.
The objective of this study was to determine retinol, retinyl esters and retinol-binding protein (RBP) as well as carotenoids in plasma, urine, liver and kidneys of randomly selected domestic cats. Retinol (240±64 ng/ml, mean±S.D.) represented one-third of total retinyl esters (736±460 ng/ml) in plasma. Retinyl esters were stearate, palmitate and oleate representing 61±6, 36±13 and 5±3% of total retinyl esters, respectively. In half of the cats, retinyl esters (22±21 ng/ml) were found in the urine. Vitamin A in the livers (4317±1956 μg/g) was significantly higher than in the kidney cortex and medulla (14.16±8.92 and 7.59±4.52 μg/g, respectively, both P<0.001). RBP was detected in the plasma but not in the urine. Immunoreactive RBP was observed in hepatocytes and in the cells of the proximal tubules. β-Carotene was present in plasma but never in tissues. The results show that similar to canines differences in vitamin A metabolism in cats are related to the occurrence of retinyl esters in plasma. They differ, however, with regard to the tissue distribution of β-carotene and the excretion of vitamin A in the urine.  相似文献   

4.
A sensitive and selective high-performance liquid chromatographic method has been developed for a new anticonvulsant, fluzinamide, and three of its active metabolites. This method requires only 0.5 ml of plasma, and it involves a single extraction with a mixture of hexane—dichloromethane—butanol (55:40:5). The plasma extract is chromatographed on a 10-μm, C18 reversed-phase column and quantitated by ultraviolet absorbance at 220 nm. The concentration—response curve for all four compounds are linear from 0.05 μg/ml to at least 10 μg/ml. The extraction efficiency of this method is greater than 90%. The accuracy and precision of the method were tested by analyzing spiked unknown samples that had been randomly distributed across the concentration range. The mean concentrations found were within ± 9% of the various amounts added with a standard deviation of ± 3.5%. This method has been successfully applied to the analysis of samples obtained from fluzinamide-dosed dogs, healthy unmedicated volunteers, and patients who were at steady state with phenytoin, carbamazepine, and fluzinamide.  相似文献   

5.
Two high-performance liquid chromatographic procedures were proposed to measure histamine. The first, with UV detection and a strong acid cation exchanger (Partisil 10, SCX Whatman), made it possible to isolate histamine and some methylated derivatives. The second, with a C18 sorbent (μBondapak, Waters, 10 μm particle size) eluted with ion-pairing phases, made it possible to isolate the histamine—o-phthaldialdehyde complexes. This last procedure allied with a chromatographic purification step gave lower or identical amounts of histamine than those described in human urine (16 ± 7 μg per 24 h), canine whole blood (1.5 ± 1 ng/ml) and human gastric juice (2.3 ± 1.4 ng/ml). The two procedures gave the concentration of a histamine-like compound isolated from the antral mucosa.  相似文献   

6.
This paper describes a novel liquid chromatographic method for the quantitation of 2-naphthol in human urine. Urine samples were extracted after enzymatic hydrolysis of glucuronides and sulfates; 2-naphthol was then separated using reversed-phase high-performance liquid chromatography. The corresponding detection limits were 0.04 ng/ml for the standard sample in acetonitrile and 0.13 ng/ml for urine samples. The level of urinary 2-naphthol in 100 Korean shipyard workers was analyzed using this new method. The level ranged from 0.21 ng/ml (0.26 μmol/mol creatinine) to 34.19 ng/ml (59.11 μmol/mol creatinine), and the mean±standard deviation was 5.08 ng/ml (6.60 μmol/mol creatinine)±5.75 ng/ml (9.22 μmol/mol creatinine). The mean±standard deviation of urinary 2-naphthol level of smokers, 7.03 ng/ml (8.49 μmol/mol creatinine)±6.16 ng/ml (10.23 μmol/mol creatinine), was significantly higher than that of non-smokers, 2.49 ng/ml (4.10 μmol/mol creatinine)±3.92 ng/ml (7.03 μmol/mol creatinine).  相似文献   

7.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

8.
Procedures based on gas chromatography were established to determine pethidine and its major metabolites in human urine. The chromatographic system consisted of a glass column packed with 3% (w/w) SP2250 on Chromosorb W (80–100 mesh) linked to a nitrogen—phosphorus detector. Diethyl ether was used as the extraction solvent. Pethidinic and norpethidinic acids, and their conjugated metabolites (after β-glucuronidase treatment) were determined after conversion into pethidine and norpethidine by acid-catalysed esterification. The retention times of pethidine, norpethidine and chlorpheniramine (internal standard) were 3.3, 4.5 and 7.5 min, respectively. The amount of unchanged drugs and metabolites excreted varied considerably among the subjects. The mean 24-h urinary recoveries in eight patients of pethidine, norpethidine, pethidinic acid, norpethidinic acid, and the glucuronides of pethidinic and norpethidinic acids were 6.62 ± 5.05, 4.33 ± 1.19, 18.9 ± 6.29, 9.10 ± 4.26, 15.1 ± 3.02 and 7.57 ± 2.28%, respectively. This indicates that the major metyabolic pathways of pethidine in the eight patients were hydrolysis followed by conjugation. Over 60% of the dose was accounted for in 24 h after intramuscular administration of 1 mg/kg pethidine.  相似文献   

9.
We have established a highly sensitive high-performance liquid chromatographic method for the determination of an anticancer drug, UCN-01, in human plasma or urine. Using a fluorescence detector set at an excitation wavelength of 310 nm and emission monitored at 410 nm, there was a good linearity for UCN-01 in human plasma (r=0.999) or urine (r=0.999) at concentrations ranging from 0.2 to 100 ng/ml or 1 to 400 ng/ml, respectively. For intra-day assay, in plasma samples, the precision and accuracy were 1.8% to 5.6% and −10.0% to 5.2%, respectively. For inter-day assay, the precision and accuracy were 2.0% to 18.2% and 2.4% to 10.0%, respectively. In urine samples, the intra- and inter-day precision and accuracy were within 3.9% and ±2.7%, respectively. The lower limit of quantification (LLOQ) was set at 0.2 ng/ml in plasma and 1 ng/ml in urine. UCN-01 in plasma samples was stable up to two weeks at −80°C and also up to four weeks in urine samples. This method could be very useful for studying the human pharmacokinetics of UCN-01.  相似文献   

10.
We report here the development and validation of an LC–MS method for quantitation of loperamide (LOP) and its N-demethyl metabolite (DMLOP) in human plasma. O-Acetyl-loperamide (A-LOP) was synthesized by us for use as an internal standard in the assay. After addition of the internal standard, the compounds of interest were extracted with methyl tert.-butylether and separated by HPLC on a C18 reversed-phase column using an acetonitrile–water gradient containing 20 mM ammonium acetate. The three compounds were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in plasma. Analytes were quantitated using positive electrospray ionization in a triple quadrupole mass spectrometer operating in the MS–MS mode. Selected reaction monitoring was used to quantify LOP (m/z 477→266), DMLOP (m/z 463→252) and A-LOP (m/z 519→266) on ions formed by loss of the 4-(p-chlorophenyl)-4-hydroxy-piperidyl group upon low energy collision-induced dissociation. Calibration curves, which were linear over the range 1.04 to 41.7 pmol/ml (LOP) and 1.55 to 41.9 pmol/ml (DMLOP), were run contemporaneously with each batch of samples, along with low (4.2 pmol/ml), medium (16.7 pmol/ml) and high (33.4 pmol/ml) quality control samples. The lower limit of quantitation (LLQ) of LOP and DMLOP was about 0.25 pmol/ml in plasma. The extraction efficiency of LOP and DMLOP from human plasma was 72.3±1.50% (range: 70.7–73.7%) and 79.4±12.8% (64.9–88.8%), respectively. The intra- and inter-assay variability of LOP and DMLOP ranged from 2.1 to 14.5% for the low, medium and high quality control samples. The method has been used successfully to study loperamide pharmacokinetics in adult humans.  相似文献   

11.
The dioxopiperazine metabolites of quinapril in plasma and urine were extracted with hexane—dichloroethane (1:1) under acidic conditions. Following derivatization with pentafluorobenzyl bromide and purification of the desired reaction products using a column packed with silica gel, the metabolites were analysed separately by capillary column gas chromatography—electron-impact mass spectrometry with selected-ion monitoring. The limits of quantitation for the metabolites were 0.2 ng/ml in plasma and 1 ng/ml in urine. The limits of detection were 0.1 ng/ml in plasma and 0.5 ng/ml in urine, at a signal-to-noise ratio of > 3 and > 5, respectively. The proposed method is applicable to pharmacokinetic studies.  相似文献   

12.
In a randomized crossover study 15 dysmenorrheic women were treated during two consecutive menstrual periods, once with the potent prostaglandin-synthesis inhibitor: ibuprofen and once with an identical looking placebo. Each patient was medicated for 12 hours during the first day of her menstrual flow and was subsequently fitted with a cervical cup for the collection of menstrual blood during three hours. In these samples the concentrations of prostaglandin (PG)F and PGE were measured by radioimmunoassay.The patients receiving placebo had high PGF levels 135 ± 27 ng/ml (Mean ± S.E.) which were significantly reduced by Ibuprofen to 24 ± 5 ng/ml (P<0.001). The PGE concentrations decreased from 5 ± 1 ng/ml to 2 ± 1 ng/ml (P<0.05). Ibuprofen also reduced the menstrual pain significantly (P<0.001). These results substantiate the earlier conclusion that a causal relationship exists between effective treatment with PG-synthesis inhibitors and decrease in menstrual blood PG levels, intrauterine pressure and dysmenorrheic pain.  相似文献   

13.
A simple purge-and-trap gas chromatographic method with flame ionization detection was developed for the determination of styrene in urine and blood. Styrene present in a 5 ml sample at room temperature was swept by helium at 40 ml/min for 11 min, trapped on a Tenax trap, desorbed by heating, cryofocused, and injected by flash heating into a DB-5 capillary GC column. The oven temperature program was from 80°C, held for 8 min, to 120°C at 5°C/min, and then held for 2 min. The detector temperature was 250°C. The calibration curves were linear in the range of 2.5–15 ppb styrene in urine and 25–150 ppb in blood. The detection limits calculated were 0.4 μg/l in urine and 0.6 μg/l in blood. The coefficients of variations within the day and day-to-day were 3 and 3.1%, respectively, for 2.5 ppb of styrene in urine, and 1 and 1.6% for 25 ppb of styrene in blood. The results obtained from samples taken from workers exposed to styrene were reported.  相似文献   

14.
CPT-11 {I; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin} is a new anticancer agent currently under clinical development. A sensitive high-performance liquid chromatographic assay suitable for the simultaneous determination of I and its active metabolite SN-38 (II) in human plasma, and their preliminary clinical pharmacokinetics, are described. Plasma samples were processed using a solid-phase (C18) extraction step allowing mean recoveries of I, II and the internal standard camptothecin (III) of 84, 99 and 72%, respectively. The extracts were chromatographed on a C18 reversed-phase column with a mobile phase composed of acetonitrile, phosphate buffer and heptanesulphonic acid, with fluorescence detection. The calibration graphs were linear over a wide range of concentrations (1 ng/ml–10 μg/ml), and the lower limit of determination was 1 ng/ml for both I and II. The method showed good precision: the within-day relative standard deviation (R.S.D.) (5–1000 ng/ml) was 13.0% (range 4.9–19.4%) for I and 12.8% (6.7–19.1%) for II; the between-day R.S.D. (5–10 000 ng/ml was 7.9% (5.4–17.5%) for I and 9.7% (3.5–15.1%) for II. Using this assay, plasma pharmacokinetics of both I and II were simultaneously determined in three patients receiving 100 mg/m2 I as a 30-min intravenous infusion. The mean peak plasma concentration of I at the end of the intravenous infusion was 2400 ± 285 ng/ml (mean ± standard error of the mean). Plasma decay was triphasic with half-lives α, β and γ of 5.4 ± 1.8 min, 2.5 ± 0.5 h and 20.2 ± 4.6 h, respectively. The volume of distribution at steady state was 105 ± 15 l/m2, and the total body clearance was 12.5 ± 1.9 l/h · m2. The maximum concentrations of the active metabolite II reached 36 ± 11 ng/ml.  相似文献   

15.
The analysis of methadone and its metabolites in biological fluids by gas chromatography—mass spectrometry is described with deuterated methadone and metabolites as internal standards. The method allowed the determination of 20 ng methadone in 0.5 ml of plasma or saliva. Mean saliva to plasma ratio of methadone for two patients was determined to be 0.51 ± 0.13. Methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in urine were measured by selected ion monitoring. Gas chromatography—mass spectrometry was found to have advantages over conventional gas chromatographic methods in terms of ratio analysis. 1,5-Dimethyl-3,3-diphenyl-2-pyrrolidone previously reported as a metabolite was shown to result primarily from the decomposition of EDDP free base.  相似文献   

16.
A rapid clean-up procedure based on ion-pair solid-phase extraction (SPE) for the high-performance liquid chromatographic (HPLC) determination of spectinomycin in swine, calf and chicken plasma at a limit of detection of 50 ng/ml is described. After dilution with water and adjustment of the pH to approximately 5.6, the plasma is applied to a high-hydrophobic C18 SPE column treated with sodium dioctylsulphosuccinate. Spectinomycin is eluted with methanol and derivatized with 2-naphthalene sulphonyl chloride prior to chromatography. The HPLC set-up consists of a dual-column system using two Chromspher silica columns and dichloromethane—acetonitrile—ethyl acetate—acetic acid, in different ratios, as mobile phases. Detection is performed at 250 nm. Quantification is carried out using external standards prepared in blank cleaned plasma. Mean recoveries were 83 ± 3% (n = 5), 93 ± 6% (n = 5) and 92 ± 6% (n = 6) for swine, calf and chicken plasma, respectively, at the 0.1 μg/ml level.  相似文献   

17.
Endogenous thromboxane production is best assessed by the measurement of its excreted metabolites, of which 11-dehydrothromboxane B2 (11-dehydro-TxB2) is most abundant. Gas chromatographic—mass spectrometric assays have been developed for this compound but suffer from the presence of co-eluting impurities which make the measurement of 11-dehydro-TxB2 difficult. Furthermore, these assays are often time-consuming. We now report a modified assay for the measurement of this compound employing gas chromatography—mass spectrometry which alleviates the problem of co-eluting impurities primarily through modification of extraction and chromatographic methods. Furthermore, the time to complete the assay is significantly shortened. It is adaptable to both urine and plasma. Precision of the assay is ± 7% and accuracy is 90%. The lower limit of sensitivity in urine is approximately 20 pg/mg creatinine. Normal levels of urinary excretion of this metabolite were found to be 370 ± 137 pg/mg creatinine (mean ± 1 S.D.) and normal plasma levels were found to be 1.5 ± 0.4 pg/ml (mean ± 1 S.D.). Urinary excretion of 11-dehydro-TxB2 is markedly altered in situations associated with abnormalities in thromboxane generation when quantified using this assay. Thus, this assay provides a sensitive and accurate method to assess endogenous thromboxane production and to further explore the role of this compound in human disease.  相似文献   

18.
A method for simultaneous determination of 5-hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide in urine is described. These compounds are metabolites of N-methyl-2-pyrrolidone, a powerful and widely used organic solvent. 5-Hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide were purified from urine by adsorption to a C8 solid-phase extraction column and then elution by ethyl acetate–methanol (80:20). After evaporation, the samples were derivatised at 100°C for 1 h by bis(trimethylsilyl)trifluoroacetamide. Ethyl acetate was then added and the samples were analysed by gas chromatography–mass spectrometry in the electron impact mode. The extraction recovery for 5-hydroxy-N-methylpyrrolidone was about 80% while that for 2-hydroxy-N-methylsuccinimide was about 30%. The intra-day precision for 5-hydroxy-N-methylpyrrolidone was 2–4% and the between-day precision 4–21% (4 and 60 μg/ml). The intra-day precision for 2-hydroxy-N-methylsuccinimide was 4–8% and the between-day precision 6–7% (2 and 20 μg/ml). The detection limit was 0.2 μg/ml urine for both compounds. The method is applicable for analysis of urine samples from workers exposed to N-methyl-2-pyrrolidone.  相似文献   

19.
A specific, sensitive and accurate quantitation method for glyceryl trinitrate was developed using gas chromatography—negative ion chemical ionization—selected ion monitoring with dichloromethane as a reagent gas. [15N3] and [2H5, 15N3] variants were synthesized from non-labelled or [2H8]glycerol and [15N]nitric acid. The former variant was used for preventing adsorption of glyceryl trinitrate onto active sites on column materials and the latter was used as an internal standard for quantitation of glyceryl trinitrate in biological fluids by selected ion monitoring. The quantitation limit of this method is 0.1 ng/ml of human plasma. When glyceryl trinitrate was administered intravenously in the dose of 4 μg/kg to patients receiving hypotensive anesthesia for surgical operation, the plasma levels exhibited a biexponential decay. The mean and standard deviation of half-lives of the α and β phases were found to be about 0.41 ± 0.13 and 5.34 ± 1.60 min, respectively.  相似文献   

20.
The urine concentrations of free salsolinol were determined in six healthy volunteers, using a gas chromatographic—mass spectrometric method with electron-capture negative-ion chemical ionization after derivatization with pentafluoropropionyl anhydride. The sensitivity of this method allows the quantification of salsolinol concentrations of 0.55 pmol/ml. The synthesis of [2H4]salsolinol from dopamine and [2H4]acetaldehyde via a Pictet—Spengler condensation is described; [2H4]salsolinol was used as the internal standard for salsolinol quantification. The urine concentrations of free salsolinol ranged from ca. 1 to 6 pmol/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号