首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
To examine the role of protein kinase A (EC 2.7.1.37) isozymes in the retinoic acid-induced growth inhibition and neuronal differentiation, we investigated the changes of protein kinase A isozyme patterns in retinoic acid-treated SH-SY5Y human neuroblastoma cells. Retinoic acid induced growth inhibition and neuronal differentiation of SH-SY5Y cells in a dose- and time-dependent manner. Neuronal differentiation was evidenced by extensive neurite outgrowth, decrease of N-Myc oncoprotein, and increase of GAP-43 mRNA. Type II protein kinase A activity increased by 1.5-fold in differentiated SH-SY5Y cells by retinoic acid treatment. The increase of type II protein kinase A was due to the increase of RIIbeta and Calpha subunits. Since type II protein kinase A and RIIbeta have been known to play important role(s) in the growth inhibition and differentiation of cancer cells, we further investigated the role of the increased type II protein kinase A by overexpressing RIIbeta in SH-SY5Y cells. The growth of RIIbeta-overexpressing cells was slower than that of parental cells, being comparable to that of retinoic acid-treated cells. Retinoic acid treatment further increased the RIIbeta level and further inhibited the growth of RIIbeta-overexpressing cells, showing strong correlation between the level of RIIbeta and growth inhibition. However, RIIbeta-overexpressing cells did not show any sign of neuronal differentiation and responded to retinoic acid in the same way as parental cells. These data suggest that protein kinase A participates in the retinoic acid-induced growth inhibition through the up-regulation of RIIbeta/type II protein kinase A.  相似文献   

2.
3.
4.
The DNA damage-response regulators ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) are structurally and functionally related protein kinases that exhibit nearly identical substrate specificities in vitro. Current paradigms hold that the relative contributions of ATM and ATR to nuclear substrate phosphorylation are dictated by the type of initiating DNA lesion; ATM-dependent substrate phosphorylation is principally activated by DNA double strand breaks, whereas ATR-dependent substrate phosphorylation is induced by UV light and other forms of DNA replication stress. In this report, we employed the cyclic AMP-response element-binding (CREB) protein to provide evidence for substrate discrimination by ATM and ATR in cellulo. ATM and ATR phosphorylate CREB in vitro, and CREB is phosphorylated on Ser-121 in intact cells in response to ionizing radiation (IR), UV light, and hydroxyurea. The UV light- and hydroxyurea-induced phosphorylation of CREB was delayed in comparison to the canonical ATR substrate CHK1, suggesting potentially different mechanisms of phosphorylation. UV light-induced CREB phosphorylation temporally correlated with ATM autophosphorylation on Ser-1981, and an ATM-specific small interfering RNA suppressed CREB phosphorylation in response to this stimulus. UV light-induced CREB phosphorylation was absent in ATM-deficient cells, confirming that ATM is required for CREB phosphorylation in UV irradiation-damaged cells. Interestingly, RNA interference-mediated suppression of ATR partially inhibited CREB phosphorylation in response to UV light, which correlated with reduced phosphorylation of ATM on Ser-1981. These findings suggest that ATM is the major genotoxin-induced CREB kinase in mammalian cells and that ATR lies upstream of ATM in a UV light-induced signaling pathway.  相似文献   

5.
The regulatory influences of glycogen synthase kinase-3 beta (GSK3 beta) and lithium on the activity of cyclic AMP response element binding protein (CREB) were examined in human neuroblastoma SH-SY5Y cells. Activation of Akt (protein kinase B) with serum-increased phospho-serine-9-GSK3 beta (the inactive form of the enzyme), inhibited GSK3 beta activity, and increased CREB DNA binding activity. Inhibition of GSK3 beta by another paradigm, treatment with the selective inhibitor lithium, also increased CREB DNA binding activity. The inhibitory regulation of CREB DNA binding activity by GSK3 beta also was evident in differentiated SH-SY5Y cells, indicating that this regulatory interaction is maintained in non-proliferating cells. These results demonstrate that inhibition of GSK3 beta by serine-9 phosphorylation or directly by lithium increases CREB activation. Conversely, overexpression of active GSK3 beta to 3.5-fold the normal levels completely blocked increases in CREB DNA binding activity induced by epidermal growth factor, insulin-like growth factor-1, forskolin, and cyclic AMP. The inhibitory effects due to overexpressed GSK3 beta were reversed by treatment with lithium and with another GSK 3beta inhibitor, sodium valproate. Overall, these results demonstrate that GSK3 beta inhibits, and lithium enhances, CREB activation.  相似文献   

6.
Tissue transglutaminase (tTG) is present in the human nervous system and is predominantly localized to neurons. Treatment of human neuroblastoma SH-SY5Y cells with retinoic acid results in increased tTG expression, which is both necessary and sufficient for differentiation. The goal of the present study was to determine whether tTG modulates the activation of the cyclic AMP-response element (CRE)-binding protein, CREB, an event that likely plays a central role in the differentiation of SH-SY5Y cells. SH-SY5Y cells stably transfected with active wild type tTG, tTG without transamidating activity (C277S), an antisense tTG construct that depleted the endogenous levels of tTG, or vector only were used for the study. Treatment with forskolin, an adenylyl cyclase activator, increased that activation-associated phosphorylation of CREB, which was prolonged by tTG overexpression. CRE-reporter gene activity was also significantly elevated in the tTG cells compared with the other cells. The enhancement of CREB phosphorylation/activation in the tTG cells is likely due to the fact that tTG significantly potentiates cAMP production, and our findings indicate that tTG enhances adenylyl cyclase activity by modulating the conformation state of adenylyl cyclase. This is the first study to provide evidence of the mechanism by which tTG may contribute to neuronal differentiation.  相似文献   

7.
For better understanding of functions of the Calcyclin Binding Protein (CacyBP) and exploring its possible roles in neuronal differentiation, the subcellular localization of human CacyBP was examined in retinoic acid(RA)-induced and uninduced neuroblastoma SH-SY5Y cells. Immunostaining indicated that CacyBP was present in the cytoplasm of uninduced SH-SY5Y cells, in which the resting Ca(2+) concentration was relatively lower than that of RA-induced cells. After the RA induction, immunostaining was seen in both the nucleus and cytoplasm. In the RA-induced differentiated SH-SY5Y cells, CacyBP was phosphorylated on serine residue(s), while it existed in a dephosphorylated form in normal (uninduced) cells. Thus, the phosphorylation of CacyBP occurs when it is translocated to the nuclear region. The translocation of CacyBP during the RA-induced differentiation of SH-SY5Y cells suggested that this protein might play a role in neuronal differentiation.  相似文献   

8.
9.
The structurally related ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) protein kinases fulfill overlapping yet non-redundant functions as key regulators of cellular DNA damage responses. We recently showed that ATM phosphorylates the cyclic AMP response element-binding protein, CREB, following exposure to ionizing radiation (IR) and other DNA-damaging stimuli. Here, we show that a phospho-specific antibody recognizing the major ATM phosphorylation site in CREB cross-reacts with SV40 large tumor antigen (LTag), a multifunctional oncoprotein required for replication of the SV40 minichromosome. The relevant IR-induced phosphorylation site in LTag recognized by phospho-CREB antibody was mapped to Ser-120. IR strongly induced the phosphorylation of Ser-120 in an ATM-dependent manner in mouse embryo fibroblasts. Infection of African green monkey CV1 cells with SV40 resulted in the activation of ATM and phosphorylation of LTag and endogenous ATM substrates. Infection-induced LTag phosphorylation correlated with the onset of DNA replication, was ATM-dependent, and peaked when viral DNA levels reached their maximum. SV40 replication in CV1 cells required an intact LTag Ser-120 phosphorylation site and was inhibited following transfection with ATM small interfering RNA suggesting that ATM is required for optimal SV40 replication in primate cells. Our findings uncover a direct link between ATM and SV40 LTag that may have implications for understanding the replication cycle of oncogenic polyoma viruses.  相似文献   

10.
11.
12.
Ataxia telangiectasia (A-T) is an autosomal, recessive disorder mainly characterized by neuronal degeneration. However, the reason for neuronal degeneration in A-T patients is still unclear. ATM (A-T, mutated), the gene mutated in A-T, encodes a 370-kDa protein kinase. We measured the levels of the ATM protein found in differentiated neuron-like rat PC12 cells and differentiated neuron-like human SH-SY5Y cells. We found that, in rat PC12 cells, ATM levels decreased dramatically after differentiation, which is consistent with previous results observed in differentiated mouse neural progenitor cells. In contrast, the levels of ATM were similar before and after differentiation in human SH-SY5Y cells. Using an indirect immunofluorescence assay, we showed that ATM translocates from the nucleus to the cytoplasm in differentiated human SH-SY5Y cells. The translocation of ATM was further verified by subcellular fractionation experiments. The constitutive expression and cytoplasmic translocation of ATM in differentiated SH-SY5Y cells suggest that ATM is important for maintaining the regular function of human neuronal cells. Our results further demonstrated that, in response to insulin, ATM protects differentiated neuron-like SH-SY5Y cells from serum starvation-induced apoptosis. These data provide the first evidence that cytoplasmic ATM promotes survival of human neuronal cells in an insulin-dependent manner.  相似文献   

13.
14.
Retinoic acid (RA) is one of the major components of vitamin A. In the present study, we found that retinoic acid activated AMP-activated protein kinase (AMPK). RA induced Rac1-GTP formation and phosphorylation of its downstream target, p21-activated kinase (PAK), whereas the inhibition of AMPK blocked RA-induced Rac1 activation. Moreover, cofilin, an actin polymerization regulator, was activated when incubated with RA. We then showed that inhibition of AMPK by compound C, a selective inhibitor of AMPK, or small interfering RNA of AMPK alpha1 blocked RA-induced cofilin phosphorylation. Additionally, we found that retinoic acid-stimulated glucose uptake in differentiated C2C12 myoblast cells and activated p38 mitogen-activated protein kinase (MAPK). Finally, the inhibition of AMPK and p38 MAPK blocked retinoic acid-induced glucose uptake. In summary, our results suggest that retinoic acid may have cytoskeletal roles in skeletal muscle cells via stimulation of the AMPK-Rac1-PAK-cofillin pathway and may also have beneficial roles in glucose metabolism via stimulation of the AMPK-p38 MAPK pathway.  相似文献   

15.
16.
17.
18.
Human neuroblastoma SH-SY5Y cells stably transfected with both wild-type and exon-9 deleted (deltaE9) presenilin constructs were used to study the role of the presenilin proteins during differentiation. Cells transfected with either wild-type or deltaE9 PS1, of which the latter abolishes normal endoproteolytic cleavage of the protein, showed no obvious differences in their ability to differentiate to a neuronal-like phenotype upon treatment with retinoic acid (RA). A defined pattern of PS1 expression was observed during differentiation with both RA and the phorbol ester TPA. Full-length PS1 was shown to increase dramatically within 5-24 h of RA treatment. TPA gave an earlier and longer lasting increase in full-length PS1 levels. The intracellular distribution pattern of PS1 was markedly altered following RA treatment. Within 24h PS1 was highly up-regulated throughout the cell body around the nucleus. Between 2 and 4 weeks PS1 staining appeared punctate and also localised to the nucleus. Increases in PS1 expression upon treatment with RA and TPA were blocked by treatment with cycloheximide, indicating a role of de-novo protein synthesis in this effect. PS2 expression remained unchanged during differentiation. Levels of full-length PS1 were also seen to increase during neurogenesis and neuronal differentiation in the forebrain of first trimester human foetuses between 6.5 and 11 weeks. These combined observations support the idea that PS1 is involved in neuronal differentiation by a mechanism likely independent of endoproteolysis of the protein.  相似文献   

19.
The paired helical filaments of highly phosphorylated tau protein are the main components of neurofibrillary tangles (NFT) in Alzheimer's disease (AD). Protein kinases including glycogen synthase kinase 3 beta (GSK3beta), cyclin-dependent kinase 5 (Cdk5), and c-Jun N-terminal kinase (JNK) have been implicated in NFT formation making the use of selective kinase inhibitors an attractive treatment possibility in AD. When sequentially treated with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF), the human neuroblastoma SH-SY5Y differentiates to neuron-like cells. We found that coincident with morphologically evident neurite outgrowth, both the content and phosphorylation state of tau increased in RA-BDNF differentiated SH-SY5Y cells. Tau phosphorylation increased at all the examined sites ser-199, ser-202, thr-205, ser-396, and ser-404, all of which are hyperphosphorylated in AD brain. We also investigated whether GSK3beta, Cdk5 or JNK was involved in tau phosphorylation in the differentiated SH-SY5Y cells. We found that GSK3beta contributed most and that Cdk5 made a minor contribution. JNK was not involved in tau phosphorylation in this system. The GSK3beta-inhibitor, lithium, inhibited tau phosphorylation in a concentration-dependent manner and with good reproducibility, which enables ranking of substances in this cell model. RA-BDNF differentiated SH-SY5Y cells could serve as a suitable model for studying the mechanisms of tau phosphorylation and for screening potential GSK3beta inhibitors.  相似文献   

20.
The ability of the human neuroblastoma cell line SH-SY5Y to metabolize androgens and progesterone was studied by incubating the cells in the presence of labeled testosterone (T) or progesterone (P) to measure, respectively, the formation of dihydrotestosterone (DHT) or dihydroprogesterone (DHP) (5-reductase activitiy). The 3-hydroxysteroid dehydrogenase activity was studied by evaluating the conversion of labeled DHT into 5-androstan-3, 17β-diol (3-diol). The results show that undifferentiated neuroblastoma cells posses a significant 5-reductase activity, as shown by the considerable conversion of T into DHT; moreover, this enzymatic activity seems to be significantly stimulated following cell differentiation induced by the phorbol ester TPA, but not after differentiation induced by retinoic acid (RA). The 5-reductase(s) present in SH-SY5Y cells is also able to convert P into DHP. In undifferentiated cells, this conversion was about 8 times higher than that of T into DHT. Under the influences of TPA and RA, the formation of DHP followed the same pattern observed for the formation of DHT. SH-SY5Y cells also appear to possess the enzyme 3-hydroxysteroid dehydrogenase, since they are able to convert DHT into 3-diol. This enzymatic activity is not altered following TPA-induced differentiation and appears to be decreased following treatment with RA. It is suggested that the SH-SY5Y cell line may represent a useful “in vitro” model for the study of the mechanisms involved in the control of androgen and P metabolism in nervous cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号