首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reciprocal gene exchange between cultivated sugar beet and wild beets in seed production areas is probably the reason for the occurence of weed beets in sugar beet production fields. Therefore, when releasing transgenic sugar beet plants into the environment, gene transfer to wild beets ( Beta vulgaris ssp. maritima ) has to be considered. In this study the transfer of BNYVV- (beet necrotic yellow vein virus) resistance and herbicide-tolerance genes from two transgenic sugar beet lines that were released in field experiments in 1993 and 1994 in Germany to different wild beet accessions was investigated. In order to evaluate the consequences of outcrossing, manual pollinations of emasculated wild beet plants with homozygous transgenic sugar beet plants were performed. In the resulting hybrids the transgenes were stably inherited according to Mendelian law. Gene expression in leaves and roots of the hybrids was in the same range as in the original transgenic sugar beet plants. Moreover, it was found that in one of the wild beet accessions, transfer and expression of the BNYVV resistance gene did considerably increase the level of virus resistance.  相似文献   

2.
Fructans are soluble polymers of fructose that are produced by approximately 15 % of the flowering plant species. Production of bacterial fructans in tobacco has been shown previously to lead to improved biomass production under polyethylene glycol-mediated drought stress. Here, we used the same SacB gene from Bacillus subtilis to produce bacterial fructans in sugar beet (Beta vulgaris L.). The transgenic sugar beets accumulated fructans to low levels (max. 0.5 % of dry weight) in both roots and shoots. Two independent transgenic lines of fructan-producing sugar beets showed significantly better growth under drought stress than untransformed beets. Drought stressed fructan-producing plants attained higher total dry weights (+25–35 %) than wildtype sugar beet, due to higher biomass production of leaves (+30–33 %), storage roots (+16–33 %) and fibrous roots (+37–60 %). Under well-watered conditions, no significant differences were observed between the transgenic and wildtype beets. In conclusion, the introduction of fructan biosynthesis in transgenic plants is a promising approach to improve crop productivity under drought stress.  相似文献   

3.
Populations of weed beets have expanded into European sugar beet production areas since the 1970s, thereby forming a serious new weed problem for this crop. We sampled seeds in different French populations and studied mitochondrial DNA, chloroplast DNA and life-cycle variability. Given the maternal inheritance of the mitochondrial and chloroplastic genomes and the nuclear determinism of the annual habit, we were able to determine the maternal origin and evolution of these weed beet populations. Our study shows that they carry the dominant allele B for annual habit at high frequency. The main cytoplasmic DNA type found in northern weed beet populations is the cytoplasmic male-sterile type characteristic of sugar beets. We were able to determine that these populations arise from seeds originating from the accidental pollinations of cultivated beets by adventitious beets in the seed production area, which have been transported to the regions where sugar beets are cultivated. These seeds are supposedly the origin of the weed forms and a frequently disturbed cultivated environment has selected for annual habit and early flowering genotypes. We discuss the consequences of the weed beet populations for the breeding, seed production and release of herbicide-resistant transgenic sugar beets.  相似文献   

4.
One of the most discussed environmental effects associated with the use of transgenic plants is the flow of genes to plants in the environment. The flow of genes may occur through pollen since it is the reproductive system that is designed for gene movement. Pollen-mediated gene escape is hard to control in mating plants. Pollen from a wind pollinator can move over distances of more than 1000 m. To investigate the efficiency of transgenic pollen movement under realistic environmental conditions, the use of bait plants might be an effective tool. In this study, cytoplasmic male-sterile (CMS) sugar beets were tested with regard to their potential for monitoring transgene flow. As the pollen source, transgenic sugar beets were used that express recombinant DNA encoding viral (beet necrotic yellow vein virus) resistance, and antibiotic (kanamycin) and herbicide (glufosinate) tolerance genes. In a field trial, the effectiveness of a hemp (Cannabis sativa) stripe containment strategy was tested by measuring the frequency of pollinated CMS bait plants placed at different distances and directions from a transgenic pollen source. The results demonstrated the ineffectiveness of the containment strategy. Physiological and molecular tests confirmed the escape and production of transgenic offspring more than 200 m behind the hemp containment. Since absolute containment is unlikely to be effective, the CMS-bait plant detection system is a useful tool for other monitoring purposes.  相似文献   

5.
In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.  相似文献   

6.
Abstract. It is highly probable that transgenic cultivars of sugar beet may influence wild beets in the seed-production-area of northern Italy. For this reason a survey of the local wild beet populations and their habitat characteristics was conducted in 1994/1995, i.e. before transgenic beets and their off spring could have become established. Wild beets (Beta vulgaris ssp. maritima) were found at 21 locations between Trieste and Cesenatico, as part of the natural littoral vegetation classified as Atriplicetum tatarici (Cakiletea maritimae) and Crithmetum (Crithmo-Staticetea). The analysis of phenotypic attributes leads to a division into three different sub-populations. Greenhouse studies on the morphology and life-cycle attributes demonstrated actual gene flow between conventional seed beet and the examined wild beet population.  相似文献   

7.
Beets are a crop of particular concern regarding invasiveness questions because they commonly become feral due to unintentional hybridization with annual forms of wild beets. In this study the performance of transgenic beets resistant to Beet Necrotic Yellow Vein Virus (BNYVV) was compared to the performance of unmodified material from the same breeding line. Both transgenic and control genotypes were also compared to a conventionally bred variety carrying a similar phenotypic trait. Field tests were developed in a step by step fashion in order to study seed emergence and competitiveness in early life stages. The tests quantified the potential ecological advantage of virus resistance under virus and non-virus infestation conditions. In experimental field releases in 1993 and 1994 in Germany, a small but increasingly clear 'additive' ecological advantage of the genetically engineered trait was detected. In both years and all competition treatments, the conventional tolerant variety performed best. An impact of naturalization on natural, nonagricultural habitats may appear in wild beet populations in Italian seed beet production areas. However, a survey of coastal areas of North-Eastern Italy found no virus infestation in 1994, suggesting that an increase in wild beet fitness is unlikely to occur.  相似文献   

8.
Expanded bed adsorption (EBA) was examined as the initial capture/purification step in the purification of monoclonal antibodies from Chinese hamster ovary (CHO) cultures. Two process alternatives each using EBA were compared to a conventional Protein A process without EBA. One alternative used Protein A affinity EBA followed by packed-bed cation and anion-exchange steps. The other alternative used cation-exchange EBA as the capture step followed by packed-bed Protein A and anion-exchange steps. The process using Protein A EBA produced comparable purity (host cell protein, DNA, Protein A, antibody aggregate) to the conventional process. However, the Protein A EBA column showed a significant decrease in dynamic capacity with a limited number of cycles. The process using cation EBA achieved comparable levels of host cell proteins (HCP) and DNA but not antibody aggregate or leached Protein A compared to the conventional process.  相似文献   

9.
10.
This study concerns the selective absorption of K and Rb or of K and Na by intact sugar beet (Beta vulgaris) plants from modified conventional nutrient solutions over an extended period of plant growth. Long term results agreed with those of short term experiments by other investigators using excised root systems and simple salt solutions. Potassium and Rb were mutually competitive in their absorption. High selectivity of K relative to Na absorption was observed. Sodium was excluded during the early growth period of sugar beets.  相似文献   

11.
Sugar beets are a raw material for the production of sugar and ethanol. The decision on which end product to pursue could be facilitated by fast and reliable means of predicting the potential ethanol yield from the beets. A Near Infrared (NIR) Spectroscopy-based approach was tested for the direct prediction of the potential bioethanol production from sugar beets. A modified partial least squares (MPLS) regression model was applied to 125 samples, ranging from 21.9 to 31.0 gL(-1) of bioethanol in sugar beet brei. The samples were analyzed in reflectance mode in a Direct Contact Food Analyser (DCFA) FOSS-NIRSystems 6500 monochromator, with standard error of cross validation (SECV), standard error of prediction (SEP), coefficient of determination (r(2)) and coefficient of variation (CV) of 0.51, 0.49, 0.91 and 1.9 gL(-1), respectively. The NIR technique allowed direct prediction of the ethanol yield from sugar beet brei (i.e. the product obtained after sawing beets with a proper machine) in less than 3 min.  相似文献   

12.
Crop-wild hybrids and weed beets are the main source of agronomic concern for sugar beet production all over Europe. In order to understand the dynamics of crop-wild interactions and the evolution of weediness in Beta vulgaris, we investigated genetic features of bolting individuals occurring at a local scale, i.e. within two sugar beet fields of the French northern area of sugar beet production. By analysing ploidy level, mitochondrial DNA and microsatellite polymorphism, the genetic diversity and the genetic relationships among three different classes of individuals (variety, in-row and out-row weed-beets) from a given field were examined. Such genetic analyses provide a unique opportunity to obtain evidence for the weeds origin and the evolutionary hypotheses previously stated. All the individuals shared in common the Svulg mitochondrial haplotype, and thus a common maternal origin. Conversely, the large genetic diversity at microsatellite loci highlighted the large diversity of the pollinator plants (cultivated and wild plants) during the-seed production process, as well as during the further evolution of weed beets in the sugar production area. Received: 23 April 2001 / Accepted: 15 June 2001  相似文献   

13.
Processing of sugar beets has become a major chemical industry in the United States. About one-quarter of the country’s sugar requirement is obtained from about 12 million tons of beets grown on 700 thousand acres of land. This industry has succeeded through the combined efforts of scientists in many fields, who have improved resistance to diseases, sugar content of beets, methods of farming and processing procedures. Feed pulp, molasses, glutamic acid, potassium salts and betaine are by-products of the industry.  相似文献   

14.
Previous studies had shown that recombinant DNA can be detected for several months in soil after the deposition of litter from transgenic (tg) plants. Here we show by PCR monitoring of field releases of tg sugar beet plants that during the growth of the plants the soil close to the plants and also plant material contains recombinant DNA, in the form of extracellular molecules. Surprisingly, the monitoring also revealed the presence of tg DNA in many field plots (30–70%) in which tg plants were never grown. These studies and the further monitoring during other tg sugar beet release experiments by PCR and a novel bioassay (measuring the transforming potential of recombinant DNA for Pseudomonas stutzeri) indicated that recombinant DNA was only detectable in the surface soil of field plots and their vicinity where flowering of the tg beet plants was allowed. Recombinant DNA was found in soil at a distance of 50 m from pollen-producing plants surrounded by a strip with hemp plants as a containment regime. It is concluded that recombinant DNA is deposited in soil during the growth of tg sugar beets and that a major mechanism of recombinant DNA spread in the environment is the dispersal of pollen which allows recombinant DNA to persist in the field plot for at least a year.  相似文献   

15.
天山北坡甜菜内生菌分离鉴定及其动态变化   总被引:3,自引:0,他引:3  
史应武  娄恺  李春 《生态学报》2009,29(5):2374-2382
对新疆昌吉和石河子两地种植的甜菜内生菌进行了分离、鉴定和分析,结果表明甜菜内生菌多属于细菌,其中假单胞菌 (Pseudomonas sp. )和芽孢菌类(Bacillus sp.)的分离频率分别在33.2%~59.2%和12.7%~28.1%,是甜菜植株中的优势内生菌群.16S rDNA 和 ITS 序列同源性比较和系统发育分析表明内生菌具有丰富的多样性.根中内生菌的多样性高于茎、叶,昌吉地区种植的甜菜中分离出的内生菌种类较多.从感病品种及生长不良甜菜植株中分离出的内生菌种类比较丰富.通过回接分离及利用扫描电镜观察内生菌在植物体内分布发现,内生菌能够定殖于甜菜块根.  相似文献   

16.
Sugar beet ( Beta vulgaris L) is generally cultivated using two different planting and harvest patterns. In northern zones, spring sugar beet is sown in spring and harvested in autumn, whereas in subtropical latitudes, autumn sugar beet is sown in autumn and harvested in summer. The industrial quality of the root is frequently higher in spring-sown sugar beet crops. In order to explore physiological changes associated with this fact, this study has been focused on the seasonal changes of adenosine 5'-triphosphate and adenosine 5'-diphosphate levels in the storage roots of sugar beet plants, as an index of its metabolic status. The results obtained correspond to a different metabolic status of spring and autumn sugar beet at the moment of harvest. The adenylate patterns of autumn beets suggested a functional and active respiratory system. On the contrary, the patterns shown by spring beets corresponded to those we would expect to see in plants becoming dormant. The proline and glucose contents, which decrease the industrial quality of the root, and the respiratory rate measured in autumn-sown sugar beets, were nearly twice those of spring-sown sugar beets. The combination of an active respiratory system, which allows the carbohydrate catabolism and the synthesis of stress molecules, with the environmental factors at the time of the harvest, could be the underlying physiological mechanism causing some of the differences between spring- and autumn-sown sugar beet crops.  相似文献   

17.
Historically, sugar beets were selected from fodder beets. We used mitochondrial minisatellite loci to analyze cytoplasmic genetic diversity in fodder beet and sugar beet. Among the 8 sugar beet accessions examined we identified 3 multi-locus haplotypes. These 3 haplotypes were a subset of 5 haplotypes identified among the 29 fodder beet accessions examined. All but one haplotype in fodder beet comprised, in turn, a subset of 12 haplotypes identified previously in leaf beets. Such apparent decreases in cytoplasmic genetic diversity must result from genetic bottlenecks associated with domestication and the ensuing breeding processes. We also detected the haplotype associated with the male-sterile Owen cytoplasm of sugar beet in the fodder beet gene pool. Furthermore, the presence of a 39 kDa protein associated with the Owen cytoplasm was confirmed in two fodder beet plants by Western blot analysis. These results lead us to speculate that the Owen cytoplasm may have originated in fodder beet, from which sugar beet was derived.  相似文献   

18.
Alkaline invertase was induced during the initiation of suspension cultures of single cells from leaf explants of sugar beets in Murashige-Skoog liquid medium which contained benzyladenine. This activity was barely detectable in the leaves themselves. In suspension cultures, the presence of both acid and alkaline invertases was detected; alkaline invertase was only present in the cytoplasm of the cultured cells, whereas acid invertase was present in the cytoplasm and cell walls, and was also detected in the culture medium. The cell wall contained at least three types of acid invertase; two of these activities were solubilized by saline (saline-released) and EDTA (EDTA-released), respectively, and the third remained tightly associated with the cell wall. Saline-released and EDTA-released invertases from the cell wall showed the significant differences in their properties: the saline-released enzyme had the highest affinity for sucrose among the invertases tested, and was easily bound to cell walls, to DNA, and to a cation exchanger, unlike the EDTA-released enzyme. Sucrose is the source of carbon for plant cells in suspension culture and is probably degraded in the cell wall by the saline-released invertase, which had the highest activity and the highest affinity for sucrose. Hexose products of this degradation would be transported to cytoplasm. Soluble invertase, EDTA-released invertase from the cell wall, and one of two extracellular invertases behaved similarly upon chromatography on DEAE-cellulose. They had similar activity profiles with changing pH, and similar Km values for sucrose. Thus it appears that they are identical. Two extracellular invertases found in the growth medium of the suspension cultures were probably identical with those in the soluble fraction of callus and seedlings of sugar beets, because they showed similar behaviors during chromatography on DEAE-cellulose, and had similar activity profiles with changing pH and Km values for sucrose.  相似文献   

19.
Here we show that horizontal transfer of DNA, extracted from transgenic sugar beets, to bacteria, based on homologous recombination, can occur in soil. Restoration of a 317-bp-deleted nptII gene in Acinetobacter sp. strain BD413(pFG4) cells incubated in sterile soil microcosms was detected after addition of nutrients and transgenic plant DNA encoding a functional nptII gene conferring bacterial kanamycin resistance. Selective effects of the addition of kanamycin on the population dynamics of Acinetobacter sp. cells in soil were found, and high concentrations of kanamycin reduced the CFU of Acinetobacter sp. cells from 10(9) CFU/g of soil to below detection. In contrast to a chromosomal nptII-encoded kanamycin resistance, the pFG4-generated resistance was found to be unstable over a 31-day incubation period in vitro.  相似文献   

20.
Using a soil debris isolation method, populations of Rhizoctonia solani were monitored over a 4 -yr period in four fields which were initially cropped to sugar beet and in which four areas of Rhizoctonia crown rot diseased beets (DA) and four areas of apparently healthy beets (AH) had been selected and precisely located. Soil from these areas was assayed during the subsequent crops, which included sugar beet, tomato, cucumber, maize and soybean. No significant differences in colony counts were found between the soils in DA and AH on any of 30 sampling dates. R. solani population counts were, in general, quite low, except under sugar beet and following tomato harvest. Areas of diseased beet and high R. solani soil populations that developed in subsequent sugar beet crops did not necessarily coincide with the previously selected diseased areas. High R. solani populations developed from parasitic activity on sugar beet or saprophytically on tomato crop residues. Of the other crops, both maize and soybean may have slightly increased the low R. solani residual populations in soil. The monitoring of R. solani populations in the season prior to, and during the early season of sugar beet cropping did not provide a basis for forecasting disease in fields or sites within fields. The initiation of disease patches in these sugar beet fields was therefore governed by factors other than inoculum density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号