首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present. This uncertainty arises because there are few long-term continuous measurements of arctic tundra CO2 fluxes over the full annual cycle. Here, we describe a pattern of CO2 loss based on the longest continuous record of direct measurements of CO2 fluxes in the Alaskan Arctic, from two representative tundra ecosystems, wet sedge and heath tundra. We also report on a shorter time series of continuous measurements from a third ecosystem, tussock tundra. The amount of CO2 loss from both heath and wet sedge ecosystems was related to the timing of freeze-up of the soil active layer in the fall. Wet sedge tundra lost the most CO2 during the anomalously warm autumn periods of September–December 2013–2015, with CH4 emissions contributing little to the overall C budget. Losses of C translated to approximately 4.1 and 1.4% of the total soil C stocks in active layer of the wet sedge and heath tundra, respectively, from 2008 to 2015. Increases in air temperature and soil temperatures at all depths may trigger a new trajectory of CO2 release, which will be a significant feedback to further warming if it is representative of larger areas of the Arctic.  相似文献   

2.
To better understand carbon (C) cycling in arctic tundra we measureddissolved C production and export rates in mesocosms of three tundra vegetationtypes: tussock, inter-tussock and wet sedge. Three flushing frequencies wereused to simulate storm events and determine potential mass export of dissolved Cunder increased soil water flow scenarios. Dissolved C production and exportrates differed between vegetation types (inter-tussock < tussock < wetsedge). In the absence of flushing, dissolved organic C (DOC) dominatedproduction in tussock and inter-tussock soils but was consumed in wet sedgesoils (8.3, 32.7, and –0.4 g C g soil–1day–1). Soil water dissolved C concentrations declined over time when flushedat high and medium frequencies but were variable at low flushing frequency.Total yield of dissolved C and DOC increased with increased flushing frequency.The ratio of DOC to dissolved inorganic C exported dropped with increasedflushing under tussock but not inter-tussock or wet sedge vegetation. Massexport per liter of water added declined as flushing frequency increased intussock and inter-tussock mesocosms. Export and production of dissolved C werestrongly correlated with above ground biomass, but not with photosynthetic ratesor below ground biomass. DOC quality was examined by measuring production ofToolik Lake bacteria fed mesocosm soil water. When normalized for DOCconcentration, wet sedge soil water supported significantly higher bacterialproduction. Our results indicate that arctic tundra soils have high potentialsfor dissolved C export, that water flow and vegetation type mainly controldissolved C export, and that responses of aquatic microbes to terrestrial inputsdepend on the vegetation type in the watershed.  相似文献   

3.
Unstable snow cover and more frequent freeze–thaw events have been predicted for montane areas in southern Norway, where stable winters are common today. These systems are important contributors to the flux of carbon (C) and nitrogen (N) to air and water. Here we quantify and compare the effects of freeze–thaw on C and N release from soils collected below Calluna, Molinia or Sphagnum. Intact organic soil cores were subjected to four different freeze–thaw regimes for four consecutive 2‐week periods: (1) slow cycling (SC) with one long freezing event during each 2‐week period, (2) fast cycling (FC) with four short freezing events during each 2‐week period, (3) permanent frost (PF) and (4) permanent thaw (PT). The freezing temperature was −5 °C and the thawing temperature was 5 °C. Before start of treatment, at the end of each 2‐week period, and during postincubation periods, carbon dioxide (CO2) emission as well as leachable dissolved organic C (DOC), dissolved organic N (DON), ammonium (NH4), nitrate (NO3) and absorbance at 254 nm were measured. In soils from all three vegetations, PF increased the release of CO2, DOC, DON and NH4 compared with PT. SC caused some scattered effects whereas FC only resulted in some increase in NO3 release below Molinia. Generally, the emission of CO2 and leaching of DOC, DON and NH4 increased in the following order: Sphagnum < Calluna < Molinia. The release of NO3 was greatest below Calluna. Our data suggest that vegetation cover and composition seem at least as important as increased soil frost for future winter fluxes of CO2, DOC, DON and dissolved inorganic N (DIN) from the soil to air and water. The freezing period needs to be sufficiently long to give significant effects.  相似文献   

4.
Summary Intact cores from the wet coastal arctic tundra at Barrow, Alaska, were used as microcosms in the measurement of CO2 fluxes between peat, vegetation, and atmosphere under controlled conditions. Net ecosystem CO2 uptake was almost twice as high at present summer temperatures (4° C) than at 8°. Lowering the water table from the soil surface to -5 cm also had a pronounced effect in decreasing net ecosystem carbon storage. Warming of the tundra climate could change this ecosystem from a sink for atmospheric CO2 to a source.  相似文献   

5.
We measured DOM fluxes from the O horizon of Hawaiiansoils that varied in nutrient availability and mineralcontent to examine what regulates the flux ofdissolved organic carbon (DOC), nitrogen (DON) andphosphorus (DOP) from the surface layer of tropicalsoils. We examined DOM fluxes in a laboratory study from N, P and N+Pfertilized and unfertilized sites on soils that rangedin age from 300 to 4 million years old. The fluxesof DOC and DON were generally related to the % Cand % N content of the soils across the sites. Ingeneral, CO2 and DOC fluxes were not correlatedsuggesting that physical desorption, dissolution andsorption reactions primarily control DOM release fromthese surface horizons. The one exception to thispattern was at the oldest site where there was asignificant relationship between DOC and CO2flux. The oldest site also contained the lowestmineral and allophane content of the three sites andthe DOC-respiration correlation indicates arelationship between microbial activity and DOC fluxat this site. N Fertilization increased DON fluxes by50% and decreased DOC:DON ratios in the youngest,most N poor site. In the older, more N rich sites, Nfertilization neither increased DON fluxes nordecreased DOM C:N ratios. Similarly, short termchanges in N availability in laboratory-based soil Nand P fertilization experiments did not affect the DOMC:N ratios of leachate. DOM C:N ratios were similar tosoil organic matter C:N ratios, and changes in DOM C:Nratios with fertilization appeared to have beenmediated through long term effects on SOM C:N ratiosrather than through changes in microbial demand for Cand N. There was no relationship between DON andinorganic N flux during these incubations suggestingthat the organic and inorganic components of N fluxfrom soils are regulated by different factors and thatDON fluxes are not coupled to immediate microbialdemand for N. In contrast to the behavior of DON, thenet flux of dissolved organic phosphorus (DOP) and DOMC:P ratios responded to both long-term P fertilizationand natural variation in reactive P availability. There was lower DOP flux and higher DOM C:P ratiosfrom soils characterized by low P availability andhigh DOP flux and narrow DOM C:P ratios in sites withhigh P availability. DOP fluxes were also closelycorrelated with dissolved inorganic P fluxes. PFertilization increased DOP fluxes by 73% in theyoungest site, 31% in the P rich intermediate agesite and 444% in the old, P poor site indicating thatDOP fluxes closely track P availability in soils.  相似文献   

6.
Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open‐top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of ?300 to ?198 g CO2–eq m?2 to a source of 105 to 144 g CO2–eq m?2. At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO2, we provide here the first in situ evidence of increasing N2O emissions from tundra soils with warming. Warming promoted N2O release not only from bare peat, previously identified as a strong N2O source, but also from the abundant, vegetated peat surfaces that do not emit N2O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO2, and CH4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic.  相似文献   

7.
The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith''s phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith''s phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure.  相似文献   

8.
Summary Natural cores of vegetation and soils of arctic tundra were collected in frozen condition in winter near Barrow, Alaska (71°20N). These cores were used as microcosms in a phytotron experiment to measure the interactions, if any, between increasing atmospheric CO2 concentration and fertilization by ammonium nitrate on net ecosystem CO2 exchange and net yield of tundra vegetation. Increased soil N significantly enhanced net ecosystem CO2 uptake. The effect of increased CO2 concentration had little or no effect on mean net ecosystem carbon balance of the tundra microcosms. Added N significantly increased leaf area and phytomass of vascular plants in the microcosms while increased atmospheric CO2 had no effect on these parameters. We conclude that atmospheric CO2 is not now limiting net ecosystem production in the tundra and that its direct effects will be slight even at double the present concentration. the most probable effects of carbon dioxide in the coastal tundra will be through its indirect effects on temperature, water table, peat decomposition, and the availability of soil nutrients.  相似文献   

9.
Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems.  相似文献   

10.
Past research strongly indicates the importance of amino acids in the N economy of the Arctic tundra, but little is known about the seasonal dynamics of amino acids in tundra soils. We repeatedly sampled soils from tussock, shrub, and wet sedge tundra communities in the summers of 2000 and 2001 and extracted them with water (H2O) and potassium sulfate (K2SO4) to determine the seasonal dynamics of soil amino acids, ammonium (NH4+), nitrate (NO3), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and phosphate (PO42–). In the H2O extractions mean concentrations of total free amino acids (TFAA) were higher than NH4+ in all soils but shrub. TFAA and NH4+ were highest in wet sedge and tussock soils and lowest in shrub soil. The most predominant amino acids were alanine, arginine, glycine, serine, and threonine. None of the highest amino acids were significantly different than NH4+ in any soil but shrub, in which NH4+ was significantly higher than all of the highest individual amino acids. Mean NO3 concentrations were not significantly different from mean TFAA and NH4+ concentrations in any soil but tussock, where NO3 was significantly higher than NH4+. In all soils amino acid and NH4+ concentrations dropped to barely detectable levels in the middle of July, suggesting intense competition for N at the height of the growing season. In all soils but tussock, amino acid and NH4+ concentrations rebounded in August as the end of the Arctic growing season approached and plant N demand decreased. This pattern suggests that low N concentrations in tundra soils at the height of the growing season are likely the result of an increase in soil N uptake associated with the peak in plant growth, either directly by roots or indirectly by microbes fueled by increased root C inputs in mid-July. As N availability decreased in July, PO42– concentrations in the K2SO4 extractions increased dramatically in all soils but shrub, where there was a comparable increase in PO42– later in the growing season. Previous research suggests that these increases in PO42– concentrations are due to the mineralization of organic phosphorus by phosphatase enzymes associated with soil microbes and plant roots, and that they may have been caused by an increase in organic P availability.  相似文献   

11.
Our understanding of the controls and magnitudes of regional CO2 exchanges in the Arctic are limited by uncertainties due to spatial heterogeneity in vegetation across the landscape and temporal variation in environmental conditions through the seasons. We measured daytime net ecosystem CO2 exchange and each of its component fluxes in the three major tundra ecosystem-types that typically occur along natural moisture gradients in the Canadian Low Arctic biweekly during the full snow-free season of 2004. In addition, we used a plant-removal treatment to compare the contribution of bulk soil organic matter to total respiratory CO2 loss among these ecosystems. Net CO2 exchange rates varied strongly, but not consistently, among ecosystems in the spring and summer phases as a result of ecosystem-specific and differing responses of gross photosynthesis and respiration to temporal variation in environmental conditions. Overall, net carbon gain was largest in the wet sedge ecosystem and smallest in the dry heath. Our measures of CO2 flux variation within each ecosystem were frequently most closely correlated with air or soil temperatures during each seasonal phase. Nevertheless, a particularly large rainfall event in early August rapidly decreased respiration rates and stimulated gross photosynthetic rates, resulting in peak rates of net carbon gain in all ecosystems. Finally, the bulk soil carbon contribution to total respiration was relatively high in the birch hummock ecosystem. Together, these results demonstrate that the relative influences of moisture and temperature as primary controls on daytime net ecosystem CO2 exchange and its component fluxes differ in fundamental ways between the landscape and ecosystem scales. Furthermore, they strongly suggest that carbon cycling responses to environmental change are likely to be highly ecosystem-specific, and thus to vary substantially across the low arctic landscape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
General circulation models consistently predict that regional warming will be most rapid in the Arctic, that this warming will be predominantly in the winter season, and that it will often be accompanied by increasing snowfall. Paradoxically, despite the strong cold season emphasis in these predictions, we know relatively little about the plot and landscape‐level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian subarctic. Ecosystem respiration rates and a wide range of associated environmental and substrate pool size variables were measured in the two most common vegetation types of the region (birch understorey and heath tundra) at four paired sites along a 50 km transect through a strong snow depth gradient in northern Sweden. Both climate and vegetation type were strong interactive controls on ecosystem CO2 production rates during winter. Of all variables tested, soil temperature explained by far the largest amount of variation in respiration rates (41–75%). Our results indicate that vegetation type only exerted an influence on respiration when snow depth was below a certain threshold (~1 m). Thus, tall vegetation that enhanced snow accumulation within that threshold resulted in more effective thermal insulation from severe air temperatures, thereby significantly increasing respiratory activity. At the end of winter, within several days of snowmelt, gross ecosystem photosynthesis rates were of a similar magnitude to ecosystem respiration, resulting in significant net carbon gain in some instances. Finally, climate and vegetation type were also strong interactive controls on total wintertime respiration, suggesting that spatial variations in maximum snowdepth may be a primary determinant of regional patterns of wintertime CO2 release. Together, our results have important implications for predictions of how the distribution of tundra vegetation types and the carbon balances of arctic ecosystems will respond to climate change during winter because they indicate a threshold (~1 m) above which there would be little effect of increased snow accumulation on wintertime biogeochemical cycling.  相似文献   

13.
Biochar as a carbon‐rich coproduct of pyrolyzing biomass, its amendment has been advocated as a potential strategy to soil carbon (C) sequestration. Updated data derived from 50 papers with 395 paired observations were reviewed using meta‐analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment. When averaged across all studies, biochar amendment had no significant effect on soil CO2 fluxes, but it significantly enhanced SOC content by 40% and MBC content by 18%. A positive response of soil CO2 fluxes to biochar amendment was found in rice paddies, laboratory incubation studies, soils without vegetation, and unfertilized soils. Biochar amendment significantly increased soil MBC content in field studies, N‐fertilized soils, and soils with vegetation. Enhancement of SOC content following biochar amendment was the greatest in rice paddies among different land‐use types. Responses of soil CO2 fluxes and MBC to biochar amendment varied with soil texture and pH. The use of biochar in combination with synthetic N fertilizer and waste compost fertilizer led to the greatest increases in soil CO2 fluxes and MBC content, respectively. Both soil CO2 fluxes and MBC responses to biochar amendment decreased with biochar application rate, pyrolysis temperature, or C/N ratio of biochar, while each increased SOC content enhancement. Among different biochar feedstock sources, positive responses of soil CO2 fluxes and MBC were the highest for manure and crop residue feedstock sources, respectively. Soil CO2 flux responses to biochar amendment decreased with pH of biochar, while biochars with pH of 8.1–9.0 had the greatest enhancement of SOC and MBC contents. Therefore, soil properties, land‐use type, agricultural practice, and biochar characteristics should be taken into account to assess the practical potential of biochar for mitigating climate change.  相似文献   

14.
土壤溶解性有机物对CO_2和N_2O排放的影响   总被引:3,自引:0,他引:3  
李彬彬  马军花  武兰芳 《生态学报》2014,34(16):4690-4697
农田土壤是温室气体的重要排放源,溶解性有机物作为土壤微生物容易利用的基质,其含量变化与温室气体的产生和排放密切相关。基于室内培养试验,对溶解性有机物影响土壤CO2、N2O的排放过程进行了分析。设置空白(CK)、单施秸秆(S)、单施氮肥(N)、秸秆和氮肥(S+N)4个不同的处理,对添加不同物质条件下土壤溶解性有机碳(DOC)、溶解性有机氮(DON)和CO2、N2O的排放动态进行了研究,对DOC和DON影响CO2、N2O的排放过程进行了探讨。结果表明:不同处理的温室气体排放通量和土壤DOC、DON含量差异显著;各处理的CO2排放通量和DOC动态随培养时间的延长呈现逐渐减小的趋势,S和S+N处理的N2O排放和DON动态呈现先增大后减小的趋势;S+N处理的CO2排放量最高,DON含量也显著高于其他处理,单施秸秆(S)处理的N2O排放量和DOC含量显著高于其它处理,单施氮肥(N)对土壤CO2的排放量和DOC含量的影响较小;土壤CO2和N2O的排放通量与土壤DOC和DON含量呈显著的相关性,相关系数(R2)达0.6以上,说明溶解性有机物的含量和动态对CO2、N2O的排放过程产生显著影响。  相似文献   

15.
Abstract. We studied the relationship between plant N:P ratio, soil characteristics and species richness in wet sedge and tussock tundra in northern Alaska at seven sites. We also collected data on soil characteristics, above‐ground biomass, species richness and composition. The N:P ratio of the vegetation did not show any relationship with species richness. The N:P ratio of the soil was related with species richness for both vegetation types. Species richness in the tussock tundra was most strongly correlated with soil calcium content and soil pH, with a strong correlation between these two factors. N:P ratio of the soil was also correlated with soil pH. Other factors correlated with species richness were soil moisture and Sphagnum cover. Organic matter content was the factor most strongly correlated with species richness in the wet sedge vegetation. N:P ratio of the soil was strongly correlated with organic matter content. We conclude that N:P ratio in the vegetation is not an important factor determining species richness in arctic tundra and that species richness in arctic tundra is mainly determined by pH and flooding. In tussock tundra the pH, declining with soil age, in combination with Sphagnum growth strongly decreases species richness, while in wet sedge communities flooding over long periods of time creates less favourable conditions for species richness.  相似文献   

16.
The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest soil organic carbon (SOC) stocks in the world (>300 Mg C ha?1) but the fate of this SOC with continued warming remains largely unknown. We quantified dissolved organic carbon (DOC) and carbon dioxide (CO2) yields from four different wetland types (rich fen, poor fen, forested wetland and cedar wetland) using controlled laboratory incubations of surface (10 cm) and subsurface (25 cm) soils incubated at 8 and 15 °C for 37 weeks. Furthermore, we used fluorescence characterization of DOC and laboratory bioassays to assess how climate-induced soil warming may impact the quality and bioavailability of DOC delivered to fluvial systems. Soil temperature was the strongest control on SOC turnover, with wetland type and soil depth less important in controlling CO2 flux and extractable DOC. The high temperature incubation increased average CO2 yield by ~40 and ~25% for DOC suggesting PCTR soils contain a sizeable pool of readily biodegradable SOC that can be mineralized to DOC and CO2 with future climate warming. Fluxes of CO2 were positively correlated to both extractable DOC and percent bioavailable DOC during the last few months of the incubation suggesting mineralization of SOC to DOC is a strong control of soil respiration rates. Whether the net result is increased export of either carbon form will depend on the balance between the land to water transport of DOC and the ability of soil microbial communities to mineralize DOC to CO2.  相似文献   

17.
Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large‐scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape‐level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer‐term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased ground saturation that will accompany permafrost thaw.  相似文献   

18.
The seasonal change in soil oxygen availability was determined in several habitats along a topographic moisture gradient in an arctic watershed. The effect of changes in soil aeration on soil chemical and plant properties was examined by comparison of the driest (tussocks) and wettest (wet sedge tundra) sites along this gradient. Spatial variability and seasonal change in soil oxygen availability was closely linked to the hydrologic regime and the thickness of the organic soil horizon. The greatest extension of the aerobic soil layer was found beneath well-drained tussocks, while less than 10% of the unfrozen soil layer is aerated in flooded wet sedge tundra. Intertussock areas and watertracks (channels of water drainage) have intermediate levels of aeration. In tussock tundra, soil oxygen diffusion is restricted in the mineral soil layer below the organic horizon due to reduced pore space. Organic matter constituents and their change with depth were similar beneath tussocks and in wet sedge tundra, indicating that factors other than soil aeration (e.g. low soil temperatures, short growing season) are the primary controls on decomposition in these two arctic tundra systems. NH4 +, the dominant form of inorganic N, was more available in wet sedge tundra than in tussock tundra. At both sites, extractable and soil solution NO3 - concentrations increased 4 to 8 fold in the second part of the growing season, indicating increased nitrifier activity with improved soil oxygen availability. Although soils thawed as deep as 60 cm, approx. 90% of the root biomass was concentrated within 20 cm of the surface. Despite the anaerobic soil environment in wet sedge tundra, the dominant species there, Eriophorum angustifolium, reached slightly greater rooting depths than E. vaginatum, whose roots grow in the elevated, aerobic portion of tussocks. E. angustifolium had a root porosity of 31%, within the range found for wetland species, while roots of E. vaginatum had a porosity close to 12%. Rhizome porosity were low in both species (11%).  相似文献   

19.
Arctic Soil Respiration: Effects of Climate and Vegetation Depend on Season   总被引:5,自引:1,他引:4  
Arctic ecosystems are important in the context of global climate change because the most rapid rises in air temperature are expected at high northern latitudes during winter. The presence of extensive soil carbon reserves in the Arctic suggests that substantial feedbacks to CO2-induced climate change could occur if warming alters carbon cycling belowground. Characterization of the controls on regional patterns of belowground CO2 release through the annual cycle is an important step towards evaluating potential feedbacks from arctic ecosystems to climate change. In this study, we assess seasonal control over the influences by climate and vegetation-type on CO2 efflux from belowground in the Alaskan tundra. Our results indicate that climate had strong effects on belowground CO2 release in both seasons. By contrast, vegetation-type had little impact on CO2 efflux from belowground in winter but was the principal control in summer. Together, these results demonstrate that seasonality is a critical factor regulating climate and vegetation-type effects on belowground CO2 release, which should be included in regional models of net carbon balance in arctic ecosystems. Received 8 December 1998; accepted 2 April 1999.  相似文献   

20.

Background and aims

Approximately 50 % of belowground organic carbon is present in the northern permafrost region and due to changes in climate there are concerns that this carbon will be rapidly released to the atmosphere. The release of carbon in arctic soils is thought to be intimately linked to the N cycle through the N cycle’s influence on microbial activity. The majority of new N input into arctic systems occurs through N2-fixation; therefore, N2-fixation may be the key driver of greenhouse gases from these ecosystems.

Methods

At Alexandra Fjord lowland, Ellesmere Island, Canada concurrent measurements of N2-fixation, N mineralization and nitrification rates, dissolved organic soil N (DON) and C, inorganic soil N and surface greenhouse gas fluxes (CO2, N2O and CH4) were taken in two ecosystem types (Wet Sedge Meadow and Dryas Heath) over the 2009 growing season (June-August). Using Structural Equation Modelling we evaluated the hypothesis that CO2, CH4 and N2O flux are linked to N2-fixation via the N cycle.

Results

The soil N cycle was linked to CO2 flux in the Dryas Heath ecosystem via DON concentrations, but there was no link between the soil N cycle and CO2 flux in the Wet Sedge Meadow. Methane flux was also not linked to the soil N cycle, nor surface soil temperature or moisture in either ecosystem. The soil N cycle was closely linked to N2O emissions but via nitrification in the Wet Sedge Meadow and inorganic N in the Dryas Heath, indicating the important role of nitrification in net N2O flux from arctic ecosystems.

Conclusions

Our results should be interpreted with caution given the high variability in both the rates of the N cycling processes and greenhouse gas flux found in both ecosystems over the growing season. However, while N2-fixation and other N cycling processes may play a more limited role in instantaneous CO2 emissions, these processes clearly play an important role in controlling N2O emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号