首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gene silencing of phenylalanine ammonia-lyase (PAL) in transgenic tobacco ( Nicotiana tabacum L.) is manifested phenotypically by reduced growth, altered leaf morphology, and reduced levels of phenylpropanoid compounds. Here we report the rare event of somatic reversion from silencing to PAL over-expression in tobacco harboring the bean PAL2 gene. This phenomenon allows the comparison of the effects of PAL under- and over-expression in the same plant. A comparison of gene silenced and revertant tissues reveals striking differences in lignin content and monomer composition, and both qualitative and quantitative differences in soluble and cell wall bound phenylpropanoid compounds in the recovered sector.  相似文献   

2.
In Arabidopsis thaliana, silencing of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthetic gene, results in a strong reduction of plant growth. We show that, in HCT-silenced plants, lignin synthesis repression leads to the redirection of the metabolic flux into flavonoids through chalcone synthase activity. Several flavonol glycosides and acylated anthocyanin were shown to accumulate in higher amounts in silenced plants. By contrast, sinapoylmalate levels were barely affected, suggesting that the synthesis of that phenylpropanoid compound might be HCT-independent. The growth phenotype of HCT-silenced plants was shown to be controlled by light and to depend on chalcone synthase expression. Histochemical analysis of silenced stem tissues demonstrated altered tracheary elements. The level of plant growth reduction of HCT-deficient plants was correlated with the inhibition of auxin transport. Suppression of flavonoid accumulation by chalcone synthase repression in HCT-deficient plants restored normal auxin transport and wild-type plant growth. By contrast, the lignin structure of the plants simultaneously repressed for HCT and chalcone synthase remained as severely altered as in HCT-silenced plants, with a large predominance of nonmethoxylated H units. These data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation.  相似文献   

3.
4.
编码苯基香豆满苄基醚还原酶(phenylcoumaran benzylic ether reductase,PCBER)的基因PCBER属于PIP亚家族,是苯丙烷代谢途径中参与木脂素合成的关键基因。该研究构建了棉花GhPCBER基因的植物过表达载体并转化拟南芥,同时构建了VIGS(virus induced gene silencing,病毒诱导的基因沉默)载体转化棉花,采用实时荧光定量PCR技术对GhPCBER基因在不同组织中的表达进行分析;对野生型和转基因植株茎叶组织中的木质素和木脂素含量进行测定分析。结果表明:(1)成功构建了GhPCBER植物过表达载体pGWB17-GhPCBRE以及基因沉默重组载体pTRV2-GhPCBER;经遗传转化获得6株转棉花GhPCBER基因抗性拟南芥植株,同时获得15株GhPCBER基因沉默棉花植株(5株为一组)。(2)PCR检测表明,6株转基因拟南芥均为过表达株系,其中株系1、2、3相对表达量更高,且在茎、叶组织中的表达量分别较野生型提高了7~14倍和6~16倍,表明GhPCBER基因成功在拟南芥中过表达;GhPCBER基因沉默棉花植株的茎、叶组织中的表达量分别比野生型棉株约下降12%和26%,表明烟草脆裂病毒(TRV)体系(pTRV2-GhPCBER)成功抑制了GhPCBER基因的表达。(3)转GhPCBER基因拟南芥茎、叶中木质素和木脂素含量较野生型均显著降低;GhPCBER基因沉默棉花植株茎、叶中木质素和木脂素含量较野生型均极显著降低;组织化学染色观察发现GhPCBER基因沉默棉花植株茎秆颜色明显比野生型染色浅,也证明沉默基因棉花植株茎秆中的木质素含量减少。(4)苯丙烷代谢通路中8个相关基因的实时荧光定量PCR分析发现,过表达或抑制GhPCBRE基因均会导致苯丙烷代谢途径发生重新定向。  相似文献   

5.
D Lee  K Meyer  C Chapple    C J Douglas 《The Plant cell》1997,9(11):1985-1998
The phenylpropanoid enzyme 4-coumarate:coenzyme A ligase (4CL) is considered necessary to activate the hydroxycinnamic acids for the biosynthesis of the coniferyl and sinapyl alcohols subsequently polymerized into lignin. To clarify the role played by 4CL in the biosynthesis of the guaiacyl (G) and syringyl (S) units characteristic of angiosperm lignin, we generated 4CL antisense Arabidopsis lines having as low as 8% residual 4CL activity. The plants had decreases in thioglycolic acid-extractable lignin correlating with decreases in 4CL activity. Nitrobenzene oxidation of cell walls from bolting stems revealed a significant decrease in G units in 4CL-suppressed plants; however, levels of S lignin units were unchanged in even the most severely 4CL-suppressed plants. These effects led to a large decrease in the G/S ratio in these plants. Our results suggest that an uncharacterized metabolic route to sinapyl alcohol, which is independent of 4CL, may exist in Arabidopsis. They also demonstrate that repression of 4CL activity may provide an avenue to manipulate angiosperm lignin subunit composition in a predictable manner.  相似文献   

6.
Cytochromes P450 monooxygenases from the CYP98 family catalyze the meta-hydroxylation step in the phenylpropanoid biosynthetic pathway. The ref8 Arabidopsis (Arabidopsis thaliana) mutant, with a point mutation in the CYP98A3 gene, was previously described to show developmental defects, changes in lignin composition, and lack of soluble sinapoyl esters. We isolated a T-DNA insertion mutant in CYP98A3 and show that this mutation leads to a more drastic inhibition of plant development and inhibition of cell growth. Similar to the ref8 mutant, the insertion mutant has reduced lignin content, with stem lignin essentially made of p-hydroxyphenyl units and trace amounts of guaiacyl and syringyl units. However, its roots display an ectopic lignification and a substantial proportion of guaiacyl and syringyl units, suggesting the occurrence of an alternative CYP98A3-independent meta-hydroxylation mechanism active mainly in the roots. Relative to the control, mutant plantlets produce very low amounts of sinapoyl esters, but accumulate flavonol glycosides. Reduced cell growth seems correlated with alterations in the abundance of cell wall polysaccharides, in particular decrease in crystalline cellulose, and profound modifications in gene expression and homeostasis reminiscent of a stress response. CYP98A3 thus constitutes a critical bottleneck in the phenylpropanoid pathway and in the synthesis of compounds controlling plant development. CYP98A3 cosuppressed lines show a gradation of developmental defects and changes in lignin content (40% reduction) and structure (prominent frequency of p-hydroxyphenyl units), but content in foliar sinapoyl esters is similar to the control. The purple coloration of their leaves is correlated to the accumulation of sinapoylated anthocyanins.  相似文献   

7.
A protein hydrolyzing hydroxycinnamoyl-CoA esters has been purified from tobacco stem extracts by a series of high pressure liquid chromatography steps. The determination of its N-terminal amino acid sequence allowed design of primers permitting the corresponding cDNA to be cloned by PCR. Sequence analysis revealed that the tobacco gene belongs to a plant acyltransferase gene family, the members of which have various functions. The tobacco cDNA was expressed in bacterial cells as a recombinant protein fused to glutathione S-transferase. The fusion protein was affinity-purified and cleaved to yield the recombinant enzyme for use in the study of catalytic properties. The enzyme catalyzed the synthesis of shikimate and quinate esters shown recently to be substrates of the cytochrome P450 3-hydroxylase involved in phenylpropanoid biosynthesis. The enzyme has been named hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyltransferase. We show that p-coumaroyl-CoA and caffeoyl-CoA are the best acyl group donors and that the acyl group is transferred more efficiently to shikimate than to quinate. The enzyme also catalyzed the reverse reaction, i.e. the formation of caffeoyl-CoA from chlorogenate (5-O-caffeoyl quinate ester). Thus, hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase appears to control the biosynthesis and turnover of major plant phenolic compounds such as lignin and chlorogenic acid.  相似文献   

8.
miRNA(microRNA)通过调控其靶标基因在植物的生长、发育和抗逆过程中扮演着重要的角色。该研究采用分子生物学和生物化学等方法,探讨棉花miR397 LAC4参与植株木质素生物合成和对棉铃虫抗性响应机制。结果发现:(1)棉花miR397(ghr miR397)在转录后调控漆酶基因(GhLAC4)的表达,GhLAC4属于蓝铜氧化酶家族,通过调控木质素合成,抵御棉铃虫入侵棉花。(2)GUS报告基因融合表达和酶活性测定表明,ghr miR397在转录后切割靶标基因GhLAC4抑制其表达。(3)利用VIGS(virus induced gene silencing)技术在棉花中沉默和过表达ghr miR397,棉铃虫抗性检测分析表明,沉默miR397表达会增加棉花对棉铃虫的抗性,但过表达ghr miR397则会降低棉花的抗性。(4)选择性和非选择性棉铃虫实验分析、组织化学染色和木质素含量测定表明,沉默GhLAC4表达会减少木质素的积累,增加棉花对棉铃虫的敏感性。研究表明,ghr miR397 GhLAC4模块共同微调棉花木质素合成来参与棉花抗虫性调控,同时也为棉花抗虫育种提供了新思路。  相似文献   

9.
10.
Salicylic acid (SA) is an important signal involved in the activation of defence responses against abiotic and biotic stress. In tobacco, benzoic acid or glucosyl benzoate were proposed to be precursors of SA. This is in sharp contrast with studies in Arabidopsis thaliana, where SA derives from isochorismate. We have determined the importance of isochorismate for SA biosynthesis in Nicotiana benthamiana using virus-induced gene silencing of the isochorismate synthase (ICS) gene. Plants with silenced ICS expression do not accumulate SA after exposure to UV or to pathogen stress. Plants with silenced ICS expression also exhibit strongly decreased levels of phylloquinone, a product of isochorismate. Our data provide evidence for an isochorismate-derived synthesis of SA in N. benthamiana.  相似文献   

11.
肉桂酸羟化酶(C4H)是苯丙烷代谢通路的关键酶,其活性和含量直接影响木质素合成的效率。本文研究通过高粱bmr突变体的抑制差减杂交筛选、克隆到了一个C4H基因sbC4H。半定量RT-PCR发现,SbC4H1在多个bmr突变体中上调表达。将SbC4H1-GFP融合基因转化拟南芥原生质体进行瞬时表达,发现SbC4H1表达产物蛋白定位于细胞质。SbC4H1在拟南芥中的异源表达明显降低其茎的木质素含量,并且下调了拟南芥4CL1、FSH和HCT质素合成基因的表达。这些结果表明,高粱SbC4H1抑制了拟南芥木质素的合成。  相似文献   

12.
We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense suppression resulted in reduced levels of Klason lignin, accompanied by a decreased syringyl/guaiacyl monomer ratio as determined by pyrolysis gas chromatography/mass spectrometry Similar reduction of lignin levels by down -regulation of L-phenylalanine ammonia-lyase, the enzyme preceding C4H in the central phenylpropanoid pathway, did not result in a decreased syringyl/guaiacyl ratio. Rather, analysis of lignin methoxyl content and pyrolysis suggested an increased syringyl/guaiacyl ratio. One possible explanation of these results is that monolignol biosynthesis from L-phenylalanine might occur by more than one route, even at the early stages of the core phenylpropanoid pathway, prior to the formation of specific monolignol precursors.  相似文献   

13.
The phenylpropanoid enzyme 4-coumarate:coenzyme A ligase (4CL) plays a key role in linking general phenylpropanoid metabolism to end-product specific biosynthetic pathways. During vascular system and floral organ differentiation, the parsley 4CL-1 gene is expressed in a restricted set of tissues and cell types where 4CL activity is required to supply precursors for the synthesis of diverse phenylpropanoid-derived products such as lignin and flavonoids. In order to localize cis -acting elements which specify complex patterns of 4CL-1 expression, we analyzed the expression of internally deleted promoter fragment— GUS fusions in tobacco plants and parsley protoplasts. Elements located between −244 and −78 were required for most aspects of developmentally regulated expression. Within this region, three separate promoter domains containing partially redundant cis -elements directed vascular-specific expression when combined with a TATA-proximal domain. A negative cis -acting element which represses phloem expression was revealed in one of the domains and appears to be responsible for restricting vascular expression to the xylem. Distinct but overlapping promoter domain combinations were required for expression in floral organs, suggesting that different combinations of cis -acting elements may direct expression in different organs. Gel retardation assays were used to demonstrate the formation of DNA-protein complexes between factors present in nuclear extracts of parsley tissue culture cells and various tobacco organs and a 4CL-1 promoter fragment. Competition experiments showed that complex formation required the presence of a 42 bp promoter domain shown to be critical for 4CL-1 expression in vascular and floral tissues. The results are discussed in light of the coordinate expression of 4CL and other phenylpropanoid genes.  相似文献   

14.
BAHD acyltransferases catalyze the acylation of many plant secondary metabolites. We characterized the function of At2g19070 , a member of the BAHD gene family of Arabidopsis thaliana . The acyltransferase gene was shown to be specifically expressed in anther tapetum cells in the early stages of flower development. The impact of gene repression was studied in RNAi plants and in a knockout (KO) mutant line. Immunoblotting with a specific antiserum raised against the recombinant protein was used to evaluate the accumulation of At2g19070 gene product in flowers of various Arabidopsis genotypes including the KO and RNAi lines, the male sterile mutant ms1 and transformants overexpressing the acyltransferase gene. Metabolic profiling of flower bud tissues from these genetic backgrounds demonstrated a positive correlation between the accumulation of acyltransferase protein and the quantities of metabolites that were putatively identified by tandem mass spectrometry as N 1, N 5, N 10-trihydroxyferuloyl spermidine and N 1, N 5-dihydroxyferuloyl- N 10-sinapoyl spermidine. These products, deposited in pollen coat, can be readily extracted by pollen wash and were shown to be responsible for pollen autofluorescence. The activity of the recombinant enzyme produced in bacteria was assayed with various hydroxycinnamoyl-CoA esters and polyamines as donor and acceptor substrates, respectively. Feruloyl-CoA and spermidine proved the best substrates, and the enzyme has therefore been named spermidine hydroxycinnamoyl transferase (SHT). A methyltransferase gene ( At1g67990 ) which co-regulated with SHT during flower development, was shown to be involved in the O -methylation of spermidine conjugates by analyzing the consequences of its repression in RNAi plants and by characterizing the methylation activity of the recombinant enzyme.  相似文献   

15.
Merali Z  Mayer MJ  Parker ML  Michael AJ  Smith AC  Waldron KW 《Planta》2007,225(5):1165-1178
Studies involving transgenic plants with modifications in the lignin pathway reported to date, have received a relatively preliminary characterisation in relation to the impact on vascular integrity, biomechanical properties of tissues and carbon allocation to phenolic pools. Therefore, in this study transgenic tobacco plants (Nicotiana tabacum cv XHFD 8) expressing various levels of a bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL) gene have been characterised for cell wall and related morphological changes. The HCHL enzyme converts p-coumaroyl-CoA to 4-hydroxybenzaldehyde thereby rerouting the phenylpropanoid pathway. Plants expressing high levels of HCHL activity exhibited reduced lignin deposition, impaired monolignol biosynthesis and vascular integrity. The plants also exhibited reduction in stem toughness concomitant with a massive reduction in both the cell wall esterified and soluble phenolics. A notable result of redirecting the carbon flux was the wall-bound accretion of vanillin and vanillic acid, probably due to the shunt pathway. Intracellular accumulation of novel metabolites such as hydroxybenzoic and vanillic acid derivatives also occurred in the transgenic plants. A line with intermediate levels of HCHL expression conferred correspondingly reduced lignin deposition, toughness and phenolics. This line displayed a normal morphology but distorted vasculature. Coloration of the xylem has been previously attributed to incorporation of alternative phenolics, whereas results from this study indicate that the coloration is likely to be due to the association of low molecular weight phenolics. There was no evidence of increased growth or enhanced cellulose biosynthesis as a result of HCHL expression. Hence, rerouting the phenylpropanoid biosynthetic pathway quantitatively and qualitatively modifies cell wall-bound phenolics and vascular structure.  相似文献   

16.
17.
Traditionally, developmental studies in plant biology have suffered from the lack of a convenient means to study gene function in non-model plant species. Here we show that virus-induced gene silencing (VIGS) is an effective new tool to study the function of orthologs of floral homeotic genes such as DEFICIENS (DEF) in non-model systems. We used a tobacco rattle virus (TRV)-based VIGS approach to study the function of the Nicotiana benthamiana DEF ortholog (NbDEF). Silencing of NbDEF in N. benthamiana using TRV-VIGS was similar to that of Antirrhinum def and Arabidopsis ap3 mutants and caused transformation of petals into sepals and stamens into carpels. Molecular analysis of the NbDEF -silenced plants revealed a dramatic reduction of the levels of NbDEF mRNA and protein in flowers. NbDEF silencing was specific and has no effect on the mRNA levels of NbTM6, the closest paralog of NbDEF. A dramatic reduction of the levels of N. benthamiana GLOBOSA (NbGLO) mRNA and protein was also observed in flowers of NbDEF-silenced plants, suggesting that cross-regulation of this GLO-like gene by NbDEF. Taken together, our results suggest that NbDEF is a functional homolog of Antirrhinum DEF. Our results are significant in that they show that TRV efficiently induces gene silencing in young and differentiating flowers and that VIGS is a promising new tool for analyses of developmental gene function in non-model organisms.  相似文献   

18.
19.
20.
The end products of the phenylpropanoid pathway play important roles in plant structure and development, as well as in plant defense mechanisms against biotic and abiotic stresses. From a human perspective, phenylpropanoid pathway-derived metabolites influence both human health and the potential utility of plants in agricultural contexts. The last known enzyme of the phenylpropanoid pathway that has not been characterized is p-coumarate 3-hydroxylase (C3H). By screening for plants that fail to accumulate soluble fluorescent phenylpropanoid secondary metabolites, we have identified a number of Arabidopsis mutants that display a reduced epidermal fluorescence (ref) phenotype. We have now shown that the ref8 mutant is defective in the gene encoding C3H. Phenotypic characterization of the ref8 mutant has revealed that the lack of C3H activity in the mutant leads to diverse changes in phenylpropanoid metabolism. The ref8 mutant accumulates p-coumarate esters in place of the sinapoylmalate found in wild-type plants. The mutant also deposits a lignin formed primarily from p-coumaryl alcohol, a monomer that is at best a minor component in the lignin of other plants. Finally, the mutant displays developmental defects and is subject to fungal attack, suggesting that phenylpropanoid pathway products downstream of REF8 may be required for normal plant development and disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号