首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chirality》2017,29(6):225-238
Stereoselective high‐performance liquid chromatographic and subcritical fluid chromatographic separations of 19 Nα‐Fmoc proteinogenic amino acid enantiomers were carried out by using Quinidine ‐based zwitterionic and anion‐exchanger‐type chiral stationary phases Chiralpak ZWIX(−) and QD‐AX. For optimization of retention and enantioselectivity, the ratio of bulk solvent components (MeOH/MeCN, H2O/MeOH, or CO2/MeOH) and the nature and concentration of the acid and base additives (counter‐ and co‐ions) were systematically varied. The effect of column temperature on the enantioseparation was investigated and thermodynamic parameters were calculated from the van't Hoff plots ln α vs. 1/T. The thermodynamic parameters revealed that the enantioseparations were enthalpy‐driven. The elution sequence was determined in all cases and with the exception of Fmoc‐Cys(Trt)‐OH, it was identical on both chiral stationary phases whereby the L‐enantiomers eluted before the D‐enantiomers.  相似文献   

2.
Direct high‐performance liquid chromatographic (HPLC) separation of four bicyclo[2.2.2]octane based 2‐amino‐3‐carboxylic acid enantiomers were developed on chiral stationary phases (CSPs) containing different macrocyclic glycopeptide antibiotic selectors. The analyses were performed under reversed‐phase, polar organic and polar ionic mode on macrocyclic‐glycopeptide‐based Chirobiotic T, T2, TAG, and R columns. The effects of the mobile phase composition including the acid and base modifier, the structure of the analytes, and the temperature on the separations were investigated. Experiments were achieved at constant mobile phase compositions on different stationary phases in the temperature range 5–40°C. Thermodynamic parameters were calculated from plots of ln k or ln α versus 1/T. It was recognized that the enantioseparations in reversed‐phase and polar organic mode were enthalpically driven, but under polar‐ionic conditions entropically driven enantioseparation was observed as well. Baseline separation and determination of elution sequence were achieved in all cases. Chirality 26:200–208, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The gas chromatographic separation of enantiomers of 2‐Br carboxylic acid derivatives was studied on four different 6‐TBDMS‐2,3‐di‐O‐alkyl‐ β‐ and ‐γ‐CD stationary phases. The differences in thermodynamic data {ΔH and –ΔS} for the 15 structurally related racemates were evaluated. The influence of structure differences in the alkyl substituents covalently attached to the stereogenic carbon atom, as well as in the ester group of the homologous analytes, and the selectivity of modified β‐ and γ‐ cyclodextrin derivatives was studied in detail. The cyclodextrin cavity size, as well as elongation of alkyl substituents in positions 2 and 3 of 6‐TBDMS‐β‐CD, also affected their selectivity. The quality of enantiomeric separations is influenced mainly by alkyl chains of the ester group of the molecule and this appears to be independent of the CD stationary phase used. In some cases the separations occur as the result of external adsorption rather than inclusion complexations with the chiral selector. It was found that the temperature dependencies of the selectivity factor were nonlinear. Chirality 26:279–285, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The synthesis of three racemates and the corresponding non‐chiral analogues of a C5‐methyl pyridazine series is described here, as well as the isolation of pure enantiomers and their absolute configuration assignment. In order to obtain optically active compounds, direct chromatographic methods of separation by HPLC‐UV were investigated using four chiral stationary phases (CSPs: Lux Amylose‐2, Lux Cellulose‐1, Lux Cellulose‐2 and Lux Cellulose‐3). The best resolution was achieved using amylose tris(5‐chloro‐2‐methylphenylcarbamate) (Lux Amylose‐2), and single enantiomers were isolated on a semipreparative scale with high enantiomeric excess, suitable for biological assays. The absolute configuration of optically active compounds was unequivocally established by X‐ray crystallographic analysis and comparative chiral HPLC‐UV profile. All compounds of the series were tested for formyl peptide receptor (FPR) agonist activity, and four were found to be active, with EC50 values in the micromolar range. Chirality 25:400–408, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The enantiomers of four unusual isoxazoline‐fused 2‐aminocyclopentanecarboxylic acids were directly separated on chiral stationary phases containing (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as chiral selector. The nature of the alcoholic modifier (MeOH, EtOH, IPA) exerted a great effect on the retention, whereas the selectivity and resolution did not change substantially. Two types of dependence of retention on alcohol content were detected: k1 increased continuously with increasing alcohol content or a U‐shaped retention curve was observed. A comparison of the chromatographic data obtained with HCOOH, AcOH, TFA, HClO4, H2SO4, or H3PO4 as acidic modifier at a constant concentration demonstrated that in most cases, larger k values were obtained on the application of AcOH or HCOOH, and an increase of the acid content resulted in a decrease of retention. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes and selector. The sequence of elution of the enantiomers was determined in all cases. Chirality 24:817‐824, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The enantiomeric separations of three neonicotinoid insecticides (identified as compounds 1 , 2 , and 3 ) were performed on three polysaccharide‐type chiral columns, that is, Chiralcel OD‐H, Chiralpak AD‐H, and Chiralpak IB, by high‐performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). Effects of the modifier percentage and column temperature on chiral recognitions of chiral stationary phases were also studied. Both 1 and 2 could be resolved on all three columns selected, with the highest Rs values obtained on Chiralpak AD‐H and Chiralcel OD‐H, respectively. However, satisfactory separation of the four stereoisomers of 3 was only achieved on Chiralcel OD‐H. Considering the effects of ethanol on the values of k, α, and Rs, we concluded that hydrogen bonding, π–π, and/or dipole–dipole interactions might be all responsible for the chiral separation. In comparison to HPLC, a shorter run time was achieved for 1 and 2 by SFC. However, 3 could not be stereoselectively resolved using SFC. On the basis of the calculated thermodynamic parameters, we found that the separation processes of enantiomers of 1 and 2 were entropy controlled and enthalpy controlled, respectively. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda‐cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose‐1, Lux Cellulose‐3, and Chiralpak IC chiral columns was investigated by reversed‐phase high‐performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose‐1 column and baseline separation on Lux Cellulose‐3 column, while LCT enantiomers could be completely separated on both Lux Cellulose‐1 and Lux Cellulose‐3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ?H and ?S were also calculated, and the maximum Rs were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed‐phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level.  相似文献   

8.
High‐performance liquid chromatographic methods were developed for the separation of the enantiomers of 19 β‐lactams. The direct separations were performed on chiral stationary phases containing either amylose‐tris‐3,5‐dimethylphenyl carbamate, (Kromasil® AmyCoat? column) or cellulose‐tris‐3,5‐dimethylphenyl carbamate, (Kromasil® CelluCoat? column) as chiral selector. The different methods were compared in systematic chromatographic examinations. The separations were carried out with good selectivity and resolution. The AmyCoat? and CelluCoat? columns appear to be highly complementary. The best separations of bi‐ and tricyclic β‐lactam stereoisomers were obtained with the AmyCoat? column, whereas the 4‐aryl‐substituted β‐lactams were better separated on the CelluCoat? column. The elution sequence was determined in all cases; no general rule could be established. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Chiral ionic liquids (CILs) with amino acids as cations have been applied as novel chiral ligands coordinated with Cu2+ to separate tryptophan enantiomers in ligand exchange chromatography. Four kinds of amino acid ionic liquids, including [L‐Pro][CF3COO], [L‐Pro][NO3], [L‐Pro]2[SO4], and [L‐Phe][CF3COO] were successfully synthesized and used for separation of tryptophan enantiomers. To optimize the separation conditions, [L‐Pro][CF3COO] was selected as the model ligand. Some factors influencing the efficiency of chiral separation, such as copper ion concentration, CILs concentration, methanol ratio (methanol/H2O, v/v), and pH, were investigated. The obtained optimal separation conditions were as follows: 8.0 mmol/L Cu(OAc)2, 4.0 mmol/L [L‐Pro][CF3COO] ,and 20% (v/v) methanol at pH 3.6. Under the optimum conditions, acceptable enantioseparation of tryptophan enantiomers could be observed with a resolution of 1.89. The results demonstrate the good applicability of CILs with amino acids as cations for chiral separation. Furthermore, a comparative study was also conducted for exploring the mechanism of the CILs as new ligands in ligand exchange chromatography. Chirality 26:160–165, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two‐phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two‐phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L‐dioctyl tartrate and L‐tryptophan, which were screened from amino acids, β‐cyclodextrin derivatives, and L‐tartrate esters. Factors such as the amounts of L‐dioctyl tartrate and L‐tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L‐dioctyl tartrate, 80 mg; L‐tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L‐dioctyl tartrate and L‐tryptophan, which enantioselectively recognized R‐ and S‐enantiomers in top and bottom phases, respectively. Compared to conventional liquid–liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. Chirality 27:650–657, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Solid phase extraction ( SPE)‐chiral separation of the important drugs pheniramine, oxybutynin, cetirizine, and brinzolamide was achieved on the C18 cartridge and AmyCoat (150 x 46 mm) and Chiralpak AD (25 cm x 0.46 cm id) chiral columns in human plasma. Pheniramine, oxybutynin, cetirizine, and brinzolamide were resolved using n‐hexane‐2‐PrOH‐DEA (85:15:0.1, v/v), n‐hexane‐2‐PrOH‐DEA (80:20:0.1, v/v), n‐hexane‐2‐PrOH‐DEA (70:30:0.2, v/v), and n‐hexane‐2‐propanol (90:10, v/v) as mobile phases. The separation was carried out at 25 ± 1 ºC temperature with detection at 225 nm for cetirizine and oxybutynin and 220 nm for pheniramine and brinzolamide. The flow rates of the mobile phases were 0.5 mLmin‐1. The retention factors of pheniramine, oxybutynin, cetirizine and brinzolamide were 3.25 and 4.34, 4.76 and 5.64, 6.10 and 6.60, and 1.64 and 2.01, respectively. The separation factors of these drugs were 1.33, 1.18, 1.09 and 1.20 while their resolutions factors were 1.09, 1.45, 1.63 and 1.25, and 1.15, respectively. The absolute configurations of the eluted enantiomers of the reported drugs were determined by simulation studies. It was observed that the order of enantiomers elution of the reported drugs was S‐pheniramine > R‐pheniramine; R‐oxybutynin > S‐oxybutynin; S‐cetirizine > R‐cetirizine; and S‐brinzolamide > R‐brinzolamide. The mechanism of separation was also determined at the supramolecular level by considering interactions and modeling results. The reported SPE‐chiral high‐performance liquid chromatography ( HPLC) methods are suitable for the enantiomeric analyses of these drugs in any biological sample. In addition, simulation studies may be used to determine the absolute configuration of the first and second eluted enantiomers. Chirality 26:136–143, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The absolute configuration of three 4‐aryl‐3,4‐dihydro‐2(1H)‐pyrimidones (Biginelli compounds, DHPMs) was established by comparison of the typical circular dichroism (CD) spectra of individual enantiomers with reference samples of known absolute configuration. The enantiomers were obtained by semipreparative separation of racemic mixtures on a Chiralcel OD‐H chiral stationary phase. The method was used to establish the enantiopreference of various lipases in biocatalytic kinetic resolution experiments employing activated DHPM esters. Chirality 11:659–662, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
《Chirality》2017,29(7):340-347
Acrylamide (AM) was copolymerized with ethylene glycol dimethacrylate (EGDMA) in the presence of (R )‐1,1′‐binaphthalene‐2‐naphthol (BINOL) as the template molecules on the surface of silica gel by a free radical polymerization to produce a chiral stationary phase based on the surface molecularly imprinted polymer (SMIP‐CSP). The SMIP‐CSP showed a much better separation factor (α = 4.28) than the CSP based on the molecularly imprinted polymer (MIP‐CSP) without coating on the silica gel (α = 1.96) during the chiral separation of BINOL enantiomers by high‐performance liquid chromatography. The influence of the pretreatment temperature and the content of the template molecule ((R )‐BINOL) of the SMIP‐CSP, and the mobile phase composition on the separation of the racemic BINOL were systematically investigated.  相似文献   

14.
Four groups of organophosphonate derivatives enantiomers were separated on N‐(3,5‐dinitrobenzoyl)‐S‐leucine chiral stationary phase. The three‐dimensional structures of the complexes between the single enantiotopic chiral compounds and chiral stationary phase have been studied using molecular model and molecular dynamics simulation. Detailed results regarding the conformation, auto‐docking, and thermodynamic estimation are presented. The elution order of the enantiomer could be determined from the energy. The predicted chiral discrimination was obtained by computational results. Chirality 25:101–106, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Hui Liu  Wei Ding 《Chirality》2019,31(3):219-229
Prothioconazole is a type of broad‐spectrum triazole thione fungicide developed by the Bayer Company. Prothioconazole‐desthio is the main metabolite of prothioconazole in the environment. In our study, enantiomeric separation of prothioconazole and prothioconazole‐desthio was performed on various chiral stationary phases (CSPs) by high‐performance liquid chromatography (HPLC). It was found that polysaccharide CSPs showed better ability than brushing CSPs in enantiomeric separation. The successful chiral separation of prothioconazole could be achieved on self‐made Chiralcel OD, commercialized Chiralcel OJ‐H and Lux Cellulose‐1. Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralpak AY‐H, Chiralpak AZ‐H, and Lux Cellulose‐1 realized the baseline separation of prothioconazole‐desthio enantiomers. Simultaneous enantiomeric separation of prothioconazole and prothioconazole‐desthio was performed on Lux Cellulose‐1 using acetonitrile (ACN) and water as mobile phase. In most cases, low temperature favored the separation of two compounds. The influence of the mobile phase ratio or type was deeply discussed. We obtained larger Rs and longer analysis time with a smaller proportion of isopropanol (IPA) or ethanol and more water content at the same temperature. The ratio of ACN and water had influences on the outflow orders of prothioconazole‐desthio enantiomers. This work provides a new approach for chiral separation of prothioconazole and prothioconazole‐desthio with a discussion of chiral separation mechanism on different CSPs.  相似文献   

16.
The effects of temperature on the chiral recognition of cyclic β‐amino acid enantiomers on zwitterionic [Chiralpak ZWIX(+) and ZWIX(–)] chiral stationary phases were investigated. Experiments were performed at different mobile phase compositions and under 10°C column temperature increments in the temperature range 10–50°C. Apparent thermodynamic parameters and Tiso values were calculated from plots of ln k and ln α versus 1/T, respectively. Unusual temperature behavior was observed, especially on the ZWIX(–) column, where the application of MeOH/MeCN (50/50 v/v) containing 25 mM triethylamine and 50 mM formic acid as mobile phase led to nonlinear van't Hoff plots and increasing retention time with increasing temperature. On both columns, both enthalpically and entropically driven separations were observed. Chirality 26:385–393, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Work from this paper details a novel walk‐up open‐access (OA) approach to enable chiral analytical method development and preparative separation of enantiomers in early discovery chemistry using supercritical fluid chromatography (SFC). We have demonstrated the success of this OA approach using immobilized chiral stationary phases (CSPs). After screening a diverse set of racemic drug candidates, we have concluded that a simplified OA chiral SFC platform can successfully purify approximately 60% of the analysed racemates. This streamlined OA workflow enables medicinal chemists with limited expertise in chiral method development to successfully and rapidly purify enantiomers for their projects using Waters UPC2 and Prep100‐SFC instrumentation.  相似文献   

18.
The aim of the paper is to describe a new synthesis route to obtain synthetic optically active clausenamidone and neoclausenamidone and then use high‐performance liquid chromatography (HPLC) to determine the optical purities of these isomers. In the process, we investigated the different chromatographic conditions so as to provide the best separation method. At the same time, a thermodynamic study and molecular simulations were also carried out to validate the experimental results; a brief probe into the separation mechanism was also performed. Two chiral stationary phases (CSPs) were compared with separate the enantiomers. Elution was conducted in the organic mode with n‐hexane and iso‐propanol (IPA) (80/20 v/v) as the mobile phases; the enantiomeric excess (ee) values of the synthetic R‐clausenamidone and S‐clausenamidone and R‐neoclausenamidone and S‐ neoclausenamidone were higher than 99.9%, and the enantiomeric ratio (er) values of these isomers were 100:0. Enantioselectivity and resolution (α and Rs, respectively) levels with values ranging from 1.03 to 1.99 and from 1.54 to 17.51, respectively, were achieved. The limits of detection and quantitation were 3.6 to 12.0 and 12.0 to 40.0 ug/mL, respectively. In addition, the thermodynamics study showed that the result of the mechanism of chiral separation was enthalpically controlled at a temperature ranging from 288.15 to 308.15 K. Furthermore, docking modeling showed that the hydrogen bonds and π‐π interactions were the major forces for chiral separation. The present chiral HPLC method will be used for the enantiomeric resolution of the clausenamidone derivatives.  相似文献   

19.
The liquid chromatographic separation of permethrin enantiomers on chiral β‐cyclodextrin‐based stationary phase has been investigated. All four enantiomers are obtained by using simple methanol and water mobile phase, under gradient mode. The method was optimized and validated. The relationship between temperature and chromatographic parameters: k′ (capacity factor), α (separation factor) and Rs (resolution factor) was studied. Van't Hoff's curves for each enantiomer were plotted for temperature range 288–318 K. It was noticed that the response factor ratio of permethrin isomers differ and calculated value is found to be 1.66 (cis/trans, for n = 5). This method has been used for determining permethrin enantiomer ratio for a few samples of working standards and one formulation. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Clobazam, a 1,5‐benzodiazepin‐2,4‐dione, is a chiral molecule because its ground state conformation features a nonplanar seven‐membered ring lacking reflection symmetry elements. The two conformational enantiomers of clobazam interconvert at room temperature by a simple ring‐flipping process. Variable temperature HPLC on the Pirkle type (R)‐N‐(3,5‐dinitronenzoyl)phenylglycine and (R,R)‐Whelk‐O1 chiral stationary phases (CSPs) allowed us to separate for the first time the conformational enantiomers of clobazam and to observe peak coalescence‐decoalescence phenomena due to concomitant separation and interconversion processes occurring on the same time scale. Clobazam showed temperature dependent dynamic high‐performance liquid chromatography (HPLC) profiles with interconversion plateaus on the two CSPs indicative of on‐column enantiomer interconversion. (enantiomerization) in the column temperature range between Tcol = 10°C and Tcol = 30°C, whereas on‐column interconversion was absent at temperature close to or lower than Tcol = 5°C. Computer simulation of exchange‐deformed HPLC profiles using a program based on the stochastic model yielded the apparent rate constants for the on‐column enantiomerization and the corresponding free energy activation barriers. At Tcol = 20°C the averaged enantiomerization barriers, ΔG?, for clobazam were found in the range 21.08–21.53 kcal mol?1 on the two CSPs. The experimental dynamic chromatograms and the corresponding interconversion barriers reported in this article are consistent with the literature data measured by DNMR at higher temperatures and in different solvents. Chirality 28:17–21, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号