首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assessment of trunk muscle activation and coordination using dynamometric measurements made in one anatomical plane has hardly minimized the production of out-of-plane coupled moments (CMs). This absence of control may add much variability in moment component partition as well as in recorded muscle activation. The aim of the study was to assess whether providing these CMs as visual feedback efficiently reduces them and whether this feedback influences trunk muscle activation. Twenty men performed five 5-s static ramp submaximal contractions, ranging from 0% to 55% of the maximal voluntary contraction (MVC), in six different directions while standing in a static dynamometer measuring L5/S1 moments. For each direction, four feedback conditions were offered, ranging from simple 1D-feedback in the primary plane of exertion, to full 3D-feedback. Surface electromyographic signals were collected for eight back and six abdominal muscles. Muscle activation amplitudes and CMs were extracted at each 10% force level from 10% to 50% maximum voluntary contraction (MVC). Providing 3D-feedback significantly reduced the CMs, at 50% MVC, by about 1–6%, 1–8% and 2–10% MVC in the sagittal, frontal and transverse planes, respectively. Providing 3D-feedback produced relatively small systematic effects (2–7%) on trunk muscle activation. However, the subjects responded differently to adequately control the coupled moments, leading in some cases to relatively high inter-individual differences in muscle activation. Interestingly, the statistical differences, and size of the effects, were mainly observed when the primary exertions were performed in the frontal and transverse planes. The implications of these findings are discussed.  相似文献   

2.
Appropriate reliability is a necessary condition for the use of surface EMG for evaluation of hamstring muscle function in cases of knee joint pathologies or ligament injuries. The aim of the study was to investigate the test-retest reliability of power spectrum and amplitude of surface electromyographic (EMG) measurements of semitendinosus (ST) and biceps femoris (BF) during ramp isometric contractions. Eleven males performed maximum isometric contractions (MVC) of the knee flexors in two sessions, a week apart with simultaneous recording of surface EMG of the BF and ST. Intra class correlation (ICC) and standard error measurements (SEM) were applied to assess test-retest reliability of the averaged EMG (aEMG) and the median frequency (MF) over 10 levels of force, from 0% to 100% of the maximum. The ICC values ranged from 0.38 to 0.96 for the aEMG with SEM values reaching 11.37% of MVC. For the MF, the ICCs ranged from 0.44 to 0.98 (SEM range 4.49–18.19 Hz). In our set up, ramp contractions can be used to examine hamstring EMG patterns with acceptable reliability.  相似文献   

3.
The purpose of this study was to determine, for different back muscles, if the median frequency (MF) of the electromyographic (EMG) power spectrum changes according to the position of the time window during a 5 s step contraction. Twenty males with no known back problems were standing upright in a dynamometer allowing lower limb and pelvis stabilization. Trunk extension efforts were performed by pushing on a force platform positioned at the T4 level while the extension moment at L5/S1 was displayed as visual feedback. The EMG signals from four homologous back muscles (multifidus at L5, ilicostalis lumborum at L3, and longissimus at L1 and T10) were collected using active surface electrodes during two 5 s static step contractions performed at five force levels (10, 20, 40, 60 and 80% of the maximal voluntary contraction). The root mean square (RMS) and MF values of the EMG signals corresponding to three 250 ms time windows (beginning, middle and end of each step contraction) were computed. The RMS values of several back muscles increased from the first to the third time window for contractions performed at high force levels only. However, a concomitant decrease in the MF values was observed only for the left multifidus muscle. It was concluded that muscle fatigue does not generally manifest itself during 5 s step contractions through the EMG signal. However, it is recommended to use step contractions lasting less than 5 s and to choose a time window located in the first 1-3 s to completely eliminate the possible effects of fatigue.  相似文献   

4.
The purpose of this study was to examine the reliability of normalisation methods used in the study of the posterior and posterolateral neck muscles in a group of healthy controls. Six asymptomatic male subjects performed a total of 12 maximum voluntary isometric contractions (MVIC) and 60%-submaximal isometric contractions (60%-MVIC) against the torque arm of an isokinetic dynamometer whilst surface and intramuscular electromyography (EMG) was recorded unilaterally from representative posterior and posterolateral locations. Reliability was calculated using intra-class correlation coefficient (ICC), relative standard error of measurement (%SEM) and relative coefficient of variation (%CV). Maximal torque output was found to be highly reliable in the directions of extension and right lateral bending when the first of three MVIC contractions was excluded. When averaged across contraction direction, high reliability was found for both surface (MVIC: ICC=0.986, %SEM=7.5, %CV=9.2; 60%-MVIC: ICC=0.975, %SEM=10, %CV=13.7) and intramuscular (MVIC: ICC=0.910, %SEM=20, %CV=19.1; 60%-MVIC: ICC=0.952, %SEM=16.5, %CV=13.5) electrodes. Intramuscular electrodes displayed the least reliability in right lateral bending. The use of visual feedback markedly increased the reliability of 60%-MVIC contractions.  相似文献   

5.
This study was designed to determine whether trunk extensor fatigue occurs during low-level activity and whether this is associated with a drop in muscle tissue oxygenation. Electromyography (EMG) feedback was used to impose constant activity in a part of the trunk extensor muscles. We hypothesized that electromyographic manifestations of fatigue and decreased oxygenation would be observed at the feedback site and that EMG activity at other sites would be more variable without fatigue manifestations. Twelve volunteers performed 30-min contractions at 2% and 5% of the maximum EMG amplitude (EMGmax) at the feedback site. EMG was recorded from six sites over the lumbar extensor muscles and near-infrared spectroscopy was used to measure changes in oxygenation at the feedback site (left L3 level, 3 cm paravertebral). In both conditions, mean EMG activity was not significantly different between electrode sites, whereas the coefficient of variation was lower at the feedback site compared to other recording sites. The EMG mean power frequency (MPF) decreased consistently at the feedback site only. At 5% EMGmax, the decrease in MPF was significant at the group level at all sites ipsilateral to the feedback site. These results suggest that the limited variability of muscle activity at the EMG feedback site and at ipsilateral locations enhances fatigue development. No decreases in tissue oxygenation were detected. In conclusion, even at mean activity levels as low as 2% EMGmax, fatigue manifestations were found in the trunk extensors. These occured in absence of changes in oxygenation of the muscle tissue.  相似文献   

6.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

7.
The goal of the present study was to compare electromyogram (EMG) power spectra obtained from step (constant force level) and ramp (progressive increase in the force level) isometric contractions. Data windows of different durations were also analysed for the step contractions, in order to evaluate the stability of EMG power spectrum statistics. Fourteen normal subjects performed (1) five ramp elbow extensions ranging from 0 to 100% of the maximum voluntary contraction (MVC) and (2) three stepwise elbow extensions maintained at five different levels of MVC. Spectral analysis of surface EMG signals obtained from triceps brachii and anconeus was performed. The mean power frequency (MPF) and the median frequency (MF) of each power spectrum were obtained from 256-ms windows taken at 10, 20, 40, 60 and 80% MVC for each type of contraction and in addition on 512-, 1024- and 2048-ms windows for the step contractions. No significant differences (P greater than 0.05) were found in the values of both spectral statistics between the different window lengths. Even though no significant differences (P greater than 0.05) were found between the ramp and the step contractions, significant interactions (P less than 0.05) between these two types of contraction and the force level were found for both the MPF and the MF data. These interactions point out the existence of different behaviours for both the MPF and the MF across force levels between the two types of contraction.  相似文献   

8.
Functional shoulder assessments require the use of objective and reliable standardized outcome measures. Therefore, the aim of this study was to examine the between-day reliability of a hand-held dynamometer when measuring muscle strength during flexion, abduction, and internal and external rotation as well as surface electromyography (EMG) when measuring muscle activity from m. trapezius superior and deltoideus anterior. Twenty-four healthy subjects participated and performed four isometric contractions measured with a hand-held dynamometer and EMG. Both relative and absolute reliability were calculated based on the mean of the last three of the four repetitions. EMG amplitude was assessed calculating both absolute and normalized root-mean-square (RMS) values. The reliability of the hand-held dynamometer was high (LOA = 3.2–7.6% and ICC = 0.89–0.98). The absolute reliability for EMG showed similar results for absolute RMS values (LOA = 20.0–68.4%) and normalized RMS values (LOA = 42.4–66.5%). However, the results concerning the relative reliability showed higher ICC for absolute RMS values (ICC = 0.82–0.92) compared with normalized values (ICC = 0.57–0.72).The outcome measurements of this study with healthy subjects were found reliable and, therefore, have the potential to detect changes in muscle strength and muscle activity.  相似文献   

9.
The purpose of this study was to determine if an active warm-up affects peak torque (PT), rate of torque development (RTD), and the electromyographic (EMG) and mechanomyographic (MMG) signals. Twenty-one men (mean age ± SD: 24.0 ± 2.7 years) visited the exercise physiology laboratory on 2 occasions. During the first visit, they either performed an active warm-up (10 minutes of stationary cycling at 70% of predicted maximum heart rate) or sat quietly (no warm-up). Participants were then tested for isometric and isokinetic (60°, 180°, and 300°·s) PT, and RTD (measured as S-gradient) on an isokinetic dynamometer. Electromyographic and MMG sensors were placed over the vastus lateralis muscle to monitor the electrical and mechanical aspects of muscle contractions, respectively. The testing protocol used for the first visit was repeated for the second visit, but the preexercise treatment (warm-up, no warm-up) not given during the first visit was administered. The results indicated that an active warm-up did not affect PT, RTD, or measures of muscle activation as reflected by EMG amplitude, EMG frequency, or MMG frequency (p > 0.05). However, MMG amplitude at 180°·s was significantly greater in the warm-up condition compared with the no warm-up condition. The isolated increase in MMG amplitude suggested that warm-up may have affected the mechanical properties of muscle by reducing muscular stiffness or decreasing intramuscular fluid pressure, but that it was not sufficient to influence performance.  相似文献   

10.
Muscle specific maximal voluntary isometric contractions (MVIC) are commonly used to elicit reference amplitudes to normalize electromyographic signals (EMG). It has been questioned whether this is appropriate for normalizing EMG from dynamic contractions. This study compares EMG amplitude when shoulder muscle activity from dynamic contractions is normalized to isometric and isokinetic maximal excitation as well as a hybrid approach currently used in our laboratory. Anterior, middle and posterior deltoid, upper and lower trapezius, pectoralis major, latissimus dorsi and infraspinatus were monitored during (1) manually resisted MVICs, and (2) maximum voluntary dynamic concentric contractions (MVDC) on an isokinetic dynamometer. Dynamic contractions were performed (a) at 30°/s about the longitudinal, frontal and sagittal axes of the shoulder, and (b) during manual bi-rotation of a tilted wheel at 120°/s. EMG from the wheel task was normalized to the maximum excitation from (i) the muscle specific MVIC, (ii) from any MVIC (MVICALL), (iii) for any MVDC, (iv) from any exertion (maximum experimental excitation, MEE). Mean EMG from the wheel task was up to 45% greater when normalized to muscle specific isometric contractions (method i) than when normalized to MEE (method iv). Seventy-five percent of MEE’s occurred during MVDCs. This study presents an 20 useful and effective process for obtaining the greatest excitation from the shoulder muscles when normalizing dynamic efforts.  相似文献   

11.
The first aim was to investigate the impact of different electromyography (EMG) parameters as a reference to normalize the EMG amplitude of the superficial quadriceps femoris muscles across different sets of a knee extension exercise. The second aim is to examine the reliability between days of the EMG parameters used as a reference. Eleven young males attended the laboratory on 4 different days and performed one repetition maximum test, maximumvoluntary isometric contractions, and a resistance training protocol until failure. Surface EMG was placed over the rectus femoris, vastus lateralis, and vastus medialis muscles. Seven EMG parameters were calculated from the tasks and used to normalize EMG amplitude measured during the resistance training protocol. A repeated-measures two-way ANOVA was used (normalized EMG amplitude × set) to compare normalized EMG across sets, while an intraclass correlation coefficient, coefficient of variation, and Bland-Altman plots were used to calculate the intra-day reliability of the EMG parameters. The present investigation showed that normalized EMG amplitude of the superficial muscles of the quadriceps measured during a knee extension exercise is influenced by the EMG parameter and depends on the muscle. While rectus femoris and vastus lateralis normalized EMG amplitude presented one parameter among seven showing similar value to the other parameters, VM showed two. Lastly, all EMG parameters for all muscles presented an overall excellent reliability and agreement between days.  相似文献   

12.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

13.
The present study investigated the effect of chronic neck muscle pain (defined as trapezius myalgia) on neck/shoulder muscle function during concentric, eccentric and static contraction. Forty-two female office workers with trapezius myalgia (MYA) and 20 healthy matched controls (CON) participated. Isokinetic (-60, 60 and 180 degrees s(-1)) and static maximal voluntary shoulder abductions were performed in a Biodex dynamometer, and electromyography (EMG) obtained in the trapezius and deltoideus muscles. Muscle thickness in the trapezius was measured with ultrasound. Pain and perceived exertion were registered before and after the dynamometer test. The main findings were that shoulder abduction torque (at -60 and 60 degrees s(-1)) and trapezius EMG amplitude (at -60, 0 and 60 degrees s(-1)) were significantly lower in MYA compared with CON (p<0.001-0.05). Deltoideus EMG and trapezius muscle thickness were not significantly different between the groups. While perceived exertion increased in both groups in response to the test (p<0.0001), pain increased in MYA only (p<0.0001). In conclusion, having trapezius myalgia was associated with decreased strength capacity and lowered activity of the painful trapezius muscle. The most consistent differences-in terms of both torque and EMG-were found during slow concentric and eccentric contractions. Activity of the synergistic pain free deltoideus muscle was not significantly lower, indicating specific inhibitory feedback of the painful trapezius muscle only. Parallel increase in pain and perceived exertion among MYA were observed in response to the maximal contractions, emphasizing that heavy physical exertion provokes pain increase only in conditions of myalgia.  相似文献   

14.
This study aimed to evaluate the validity and test–retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r = 0.74−0.85; P < 0.001) and between EMG activity and submaximal isometric torque (r  0.99; P < 0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from −3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test–retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes.  相似文献   

15.
The focus of the present study is the long term element of muscle fatigue provoked by prolonged intermittent contractions at submaximal force levels and analysed by force, surface electromyography (EMG) and mechanomyogram (MMG). It was hypothesized that fatigue related changes in mechanical performance of the biceps muscle are more strongly reflected in low than in high force test contractions, more prominent in the MMG than in the EMG signal and less pronounced following contractions controlled by visual compared to proprioceptive feedback. Further, it was investigated if fatigue induced by 30 min intermittent contractions at 30% as well as 10% of maximal voluntary contraction (MVC) lasted more than 30 min recovery. In six male subjects the EMG and MMG were recorded from the biceps brachii muscle during three sessions with fatiguing exercise at 10% with visual feedback and at 30% MVC with visual and proprioceptive feedback. EMG, MMG, and force were evaluated during isometric test contractions at 5% and 80% MVC before prolonged contraction and after 10 and 30 min of recovery. MVC decreased significantly after the fatiguing exercise in all three sessions and was still decreased even after 30 min of recovery. In the time domain significant increases after the fatiguing exercise were found only in the 5% MVC tests and most pronounced for the MMG. No consistent changes were found for neither EMG nor MMG in the frequency domain and feedback mode did not modify the results. It is concluded that long term fatigue after intermittent contractions at low force levels can be detected even after 30 min of recovery in a low force test contraction. Since the response was most pronounced in the MMG this may be a valuable variable for detection of impairments in the excitation-contraction coupling.  相似文献   

16.
The interpretation of the electromyogram (EMG) of dynamic contractions might be difficult because the movement per se introduces additional factors that could affect its characteristics. There is a lack of studies concerning the reproducibility of surface EMG registrations during dynamic contractions. The aim was to investigate the during-the-day reproducibility (using intra-class correlation; ICC) of the peak torque (PT) and the EMG variables (without removing the electrodes) of dynamic contractions. Ten healthy subjects performed three sets of 10 dynamic maximum right-knee extensions with a one-hour interval in between, using an isokinetic dynamometer and the PT was determined. EMG signals were recorded from the right vastus lateralis, rectus femoris and vastus medialis muscles using surface electrodes and the mean frequency of the power spectrum (MNF [Hz]) and the signal amplitude (RMS [microV]), were computed. The ability to relax in-between the maximum extensions was calculated as a ratio of the RMS during the passive flexion phase and the RMS during the active extension phase of each contraction cycle: the signal amplitude ratio (SAR). Both PT (ICC = 0.99) and RMS (ICC = 0.83-0.98) had good reproducibility. The reproducibility of MNF was good for all muscles when the mean of contraction nos.: 1-10 was used. Vastus lateralis had the highest ICC among the three muscles. The reproducibility of SAR was generally poor (ICC < 0.60). The present study showed good reproducibility for common EMG variables (MNF and RMS) obtained during maximum isokinetic contractions.  相似文献   

17.
IntroductionIn a previous paper, standard surface electromyographic (EMG) indices of muscle fatigue, which are based on the lowering of the median or mean frequencies of the EMG power spectrum in time, were applied during an intermittent absolute endurance test and were evaluated relative to criterion validity and test–retest reliability. The aims of this study were to assess mechanical and alternative EMG correlates of muscle fatigue.MethodsHealthy subjects (44 males and 29 females; age: 20–55 yrs) performed three maximal voluntary contractions (MVC) and an endurance test while standing in a static dynamometer. Surface EMG signals were collected from four pairs of back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10). The test, assessing absolute endurance (90 N m torque), consisted of performing an intermittent extension task to exhaustion. Strength was defined as the peak MVC whereas our endurance criterion was defined as the time to reach exhaustion (Tend) during the endurance test. Mechanical indices quantifying physiological tremor and steadiness were computed from the dynamometer signals (L5/S1 extension moments) along with EMG indices presumably sensitive to variable load sharing between back muscle synergists during the endurance test.ResultsMechanical indices were significantly correlated to Tend (r range: −0.47 to –0.53) but showed deceiving reliability results. Conversely, the EMG indices were correlated to Tend (r range: −0.43 to –0.63) with some of them particularly correlated to Strength (r =  0.72 to –0.81). In addition, their reliability results were acceptable (intra-class correlation coefficient >0.75; standard error of measurement <10% of the mean) in many cases. Finally, several analyses substantiated their physiological relevance. These findings imply that these new EMG indices could be used to predict absolute endurance as well as strength with the use of a single intermittent and time-limited (5–10 min) absolute endurance test, a practical way to assess the back capacity of chronic low back pain subjects.  相似文献   

18.
This study investigated long-term effects of training on postural control using the model of deficits in activation of transversus abdominis (TrA) in people with recurrent low back pain (LBP). Nine volunteers with LBP attended four sessions for assessment and/or training (initial, two weeks, four weeks and six months). Training of repeated isolated voluntary TrA contractions were performed at the initial and two-week session with feedback from real-time ultrasound imaging. Home program involved training twice daily for four weeks. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with surface and fine-wire electrodes. Rapid arm movement and walking were performed at each session, and immediately after training on the first two sessions. Onset of trunk muscle activation relative to prime mover deltoid during arm movements, and the coefficient of variation (CV) of EMG during averaged gait cycle were calculated. Over four weeks of training, onset of TrA EMG was earlier during arm movements and CV of TrA EMG was reduced (consistent with more sustained EMG activity). Changes were retained at six months follow-up (p<0.05). These results show persistence of motor control changes following training and demonstrate that this training approach leads to motor learning of automatic postural control strategies.  相似文献   

19.
The objective of this study was to determine if simple, shoulder movements use the dual control hypothesis strategy, previously demonstrated with elbow movements, and to see if this strategy also applies in the absence of visual feedback. Twenty subjects were seated with their right arm abducted to 90 degrees and externally rotated in the scapular plane. Subjects internally rotated to a target position using a custom shoulder wheel at three different speeds with and without visual feedback. Kinematics were collected with a motion analysis system and electromyographic (EMG) recordings of the pectoralis major (PECT), infraspinatus (INFRA), anterior and posterior (ADELT, PDELT) deltoid muscles were used to evaluate muscle activity patterns during movements. Kinematics changed as movement speed increased with less accuracy (p<0.01). Greater EMG activity was observed in the PECT, PDELT, and INFRA with shorter durations for the ADELT, PDELT and INFRA. Movements with only kinesthetic feedback were less accurate (p<0.01) and performed faster (p<0.01) than movements with visual feedback. EMG activity suggests no major difference in CNS control strategies in movements with and without visual feedback. Greater resolution with visual feedback enables the implementation of a dual control strategy, allowing greater movement velocity while maintaining accuracy.  相似文献   

20.
Endurance capacity of human vastus lateralis muscles was observed 24 h after hard exercise followed by either a carbohydrate-restricted or a carbohydrate-loaded diet (depletion and repletion conditions). In a control condition the subjects did no previous exercise and ate their normal diet. Each of these conditions was followed by an experimental protocol in which the five male subjects made a series of alternating 25-s static contractions of each leg at 50% maximal voluntary contraction until one leg failed to achieve the required force (Tlim). Glycogen concentration before the experimental protocol in both legs was significantly lower in the depletion than in the repletion condition. Muscle lactate and creatine phosphate concentrations were within normal limits before the static contractions. The number of contractions the repleted (12.7 +/- 2.2) and depleted (10.3 +/- 1.5) legs could sustain before Tlim were not different from each other, but both were 35% (P less than 0.05) fewer than the control (17.6 +/- 3.0). Surface electromyogram (EMG) amplitude was higher in depleted than in repleted or control muscles. At Tlim, EMG amplitude was maximal, creatine phosphate was 50-70% depleted, and lactate increased fourfold. Average glycogen utilization per contraction in both the repletion and depletion conditions was 5.8 mmol/kg dry wt, but postexercise lactate concentrations were lower in depleted (14.4 +/- 3.6 mmol/kg dry wt) than in repleted (43.2 +/- 7.4) muscles. The EMG frequency distribution shifted downward in all conditions during the experimental protocol and was independent of muscle lactate concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号