首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate determination of joint axes is essential for understanding musculoskeletal function. Whilst numerous algorithms to compute such axes exist, the conditions under which each of the methods performs best remain largely unknown. Typically, algorithms are evaluated for specific conditions only limiting the external validity of conclusions regarding their performance. We derive exact mathematical relationships between three commonly used algorithms for computing joint axes from motion data: finite helical axes (FHA), instantaneous helical axes (IHA) and SARA (symmetrical axis of rotation approach), including relationships for an extension to the mean helical axes methods that facilitate determining joint centres and axes. Through the derivation of a sound mathematical framework to objectively compare the algorithms we demonstrate that the FHA and SARA approach are equivalent for the analysis of two time frames. Moreover, we show that the position of a helical axis derived from the IHA using positional data is affected by a systematic error perpendicular to the true axis direction, whereas the axis direction is identical to those computed with either the FHA or SARA approach (true direction). Finally, with an appropriate choice of weighting factors the mean FHA (MFHA) method is equivalent to the Symmetrical Centre of Rotation Estimation (SCoRE) algorithm for determination of a Centre of Rotation (CoR), and similarly, equivalent to the SARA algorithm for determination of an Axis of Rotation (AoR). The deep understanding of the equivalences between methods presented here enables readers to choose numerically efficient, robust methods for determining AoRs and CoRs with confidence.  相似文献   

2.
In orthodontics, tooth movement is typically described using the rectangular coordinate system (XYZ); however, this system has several disadvantages when performing biomechanical analyses. An alternative method is the finite helical axis (FHA) system, which describes movement as a rotation about and a translation along a single axis located in space. The purpose of this study was to examine differences between the FHA and the XYZ systems in analyzing orthodontic tooth movement. Maxillary canine retraction was done using sliding mechanics or a retraction spring with midpalatal orthodontic implants used as measuring references. Tooth movement calculated with the FHA was compared with the corresponding movement in the rectangular coordinate system weekly over a 2-month interval in eight patients. The FHA showed that sliding mechanics controlled rotation of the canine better than the retraction spring (Ricketts retractor), and that the Ricketts retractor controlled tipping better. Changes in the FHA direction and position vectors with time showed that the biomechanical forces are not uniform during the treatment period. In both mechanics, the FHA provided a simple biomechanical model for canine retraction.  相似文献   

3.
The purpose of this study was to determine the changes in the axis of rotation of the knee that occur during the stance phase of running. Using intracortical pins, the three-dimensional skeletal kinematics of three subjects were measured during the stance phase of five running trials. The stance phase was divided into equal motion increments for which the position and orientation of the finite helical axes (FHA) were calculated relative to a tibial reference frame. Results were consistent within and between subjects. At the beginning of stance, the FHA was located at the midepicondylar point and during the flexion phase moved 20mm posteriorly and 10mm distally. At the time of peak flexion, the FHA shifted rapidly by about 10-20mm in proximal and posterior direction. The angle between the FHA and the tibial transverse plane increased gradually during flexion, to about 15 degrees of medial inclination, and then returned to zero at the start of the extension phase. These changes in position and orientation of FHA in the knee should be considered in analyses of muscle function during human movement, which require moment arms to be defined relative to a functional rotation axis. The finding that substantial changes in axis of rotation occurred independent of flexion angle suggests that musculoskeletal models must have more than one kinematic degree-of-freedom at the knee. The same applies to the design of knee prostheses, if the goal is to restore normal muscle function.  相似文献   

4.
To reduce anatomically unrealistic limb postures in a virtual musculoskeletal model of a horse's forelimb, accurate knowledge on forelimb joint constraints is essential. The aim of this cadaver study is to report all orientation and position changes of the finite helical axes (FHA) as a function of joint angle for different equine forelimb joints. Five horse cadaver forelimbs with standardized cuts at the midlevel of each segment were used. Bone pins with reflective marker triads were drilled into the forelimb bones. Unless joint angles were anatomically coupled, each joint was manually moved independently in all three rotational degrees of freedom (flexion–extension, abduction–adduction, internal–external rotation). The 3D coordinates of the marker triads were recorded using a six infra-red camera system. The FHA and its orientational and positional properties were calculated and expressed against joint angle over the entire range of motion using a finite helical axis method. When coupled, joint angles and FHA were expressed in function of flexion–extension angle. Flexion–extension movement was substantial in all forelimb joints, the shoulder allowed additional considerable motion in all three rotational degrees of freedoms. The position of the FHA was constant in the fetlock and elbow and a constant orientation of the FHA was found in the shoulder. Orientation and position changes of the FHA over the entire range of motion were observed in the carpus and the interphalangeal joints. We report FHA position and orientation changes as a function of flexion–extension angle to allow for inclusion in a musculoskeletal model of a horse to minimize calculation errors caused by incorrect location of the FHA.  相似文献   

5.
In biomechanical joint-motion analyses, the continuous motion to be studied is often approximated by a sequence of finite displacements, and the Finite Helical Axis (FHA) or "screw axis" for each displacement is estimated from position measurements on a number of anatomical or artificial landmarks. When FHA parameters are directly determined from raw (noisy) displacement data, both the position and the direction of the FHA are ill-determined, in particular when the sequential displacement steps are small. This implies, that under certain conditions, the continuous pathways of joint motions cannot be adequately described. The purpose of the present experimental study is to investigate the applicability of smoothing (or filtering) techniques, in those cases where FHA parameters are ill-determined. Two different quintic-spline smoothing methods were used to analyze the motion data obtained with Roentgenstereophotogrammetry in two experiments. One concerning carpal motions in a wrist-joint specimen, and one relative to a kinematic laboratory model, in which the axis positions are a priori known. The smoothed and non-smoothed FHA parameter errors were compared. The influences of the number of samples and the size of the sampling interval (displacement step) were investigated, as were the effects of equidistant and nonequidistant sampling conditions and noise invariance.  相似文献   

6.
The heartbeat has been proposed as an intrinsic source of motion that can be used in combination with tagged Magnetic Resonance Imaging (MRI) to measure displacements induced in the liver as an index of liver stiffness. Optimizing a tagged MRI acquisition protocol in terms of sensitivity to these displacements, which are in the order of pixel size, is necessary to develop the method as a quantification tool for staging fibrosis. We reproduced a study of cardiac-induced strain in the liver at 3T and simulated tagged MR images with different grid tag patterns to evaluate the performance of the Harmonic Phase (HARP) image analysis method and its dependence on the parameters of tag spacing and grid angle. The Partial Volume Effect (PVE), T1 relaxation, and different levels of noise were taken into account. Four displacement fields of increasing intensity were created and applied to the tagged MR images of the liver. These fields simulated the deformation at different liver stiffnesses. An Error Index (EI) was calculated to evaluate the estimation accuracy for various parameter values. In the absence of noise, the estimation accuracy of the displacement fields increased as tag spacings decreased. EIs for each of the four displacement fields were lower at 0° and the local minima of the EI were found to correspond to multiples of pixel size. The accuracy of the estimation decreased for increasing levels of added noise; as the level increased, the improved estimation caused by decreasing the tag spacing tended to zero. The optimal tag spacing turned out to be a compromise between the smallest tag period that is a multiple of the pixel size and is achievable in a real acquisition and the tag spacing that guarantees an accurate liver displacement measure in the presence of realistic levels of noise.  相似文献   

7.
Traditionally the FHA is calculated stepwise between data points (sFHA), requiring down sampling to achieve a sufficiently large step size to minimize error. This paper proposes an alternate FHA calculation approach (rFHA), using a unique reference position to reduce error associated with small rotation angles. This study demonstrated error reduction using the rFHA approach relative to the sFHA approach. Furthermore, the rFHA in the femur is defined at each time point providing a continuous representation of joint motion. These characteristics enable the rFHA to quantify small differences in knee joint motion, providing an excellent measure to quantify knee joint stability.  相似文献   

8.
肠-脑轴是大脑和肠道神经系统双向联系的通道,近年来关于肠道微生物与宿主的神经生理和行为之间关系的研究快速增长,成为学科领域研究热点和发展方向之一。肠-脑轴调控昆虫多种行为和生理功能,昆虫的生长发育、繁殖等都与肠道菌密不可分。本文综述了肠道微生物对昆虫觅食、运动、交配、攻击、学习和记忆行为以及社会性行为的影响,并且概述了以昆虫为模型,对肠-脑轴与人类神经性疾病相关性研究的进展。  相似文献   

9.
Forkhead-associated (FHA) domains have been shown to recognize both pThr and pTyr-peptides. The solution structures of the FHA2 domain of Rad53 from Saccharomyces cerevisiae, and its complex with a pTyr peptide, have been reported recently. We now report the solution structure of the other FHA domain of Rad53, FHA1 (residues 14-164), and identification of binding sites of FHA1 and its target protein Rad9. The FHA1 structure consists of 11 beta-strands, which form two large twisted anti-parallel beta-sheets folding into a beta-sandwich. Three short alpha-helices were also identified. The beta-strands are linked by several loops and turns. These structural features of free FHA1 are similar to those of free FHA2, but there are significant differences in the loops. Screening of a peptide library [XXX(pT)XXX] against FHA1 revealed an absolute requirement for Asp at the +3 position and a preference for Ala at the +2 position. These two criteria are met by a pThr motif (192)TEAD(195) in Rad9. Surface plasmon resonance analysis showed that a pThr peptide containing this motif, (188)SLEV(pT)EADATFVQ(200) from Rad9, binds to FHA1 with a K(d) value of 0.36 microM. Other peptides containing pTXXD sequences also bound to FHA1, but less tightly (K(d)=4-70 microM). These results suggest that Thr192 of Rad9 is the likely phosphorylation site recognized by the FHA1 domain of Rad53. The tight-binding peptide was then used to identify residues of FHA1 involved in the interaction with the pThr peptide. The results are compared with the interactions between the FHA2 domain and a pTyr peptide derived from Rad9 reported previously.  相似文献   

10.
脑和肠道微生物群之间的相互作用逐渐被揭示。目前已经提出脑-肠轴失调和异常与各种中枢神经系统疾病有关。精神分裂症是一种病因不明的严重精神障碍。最近研究表明,肠道微生物的组成和数量变化会通过肠道菌群-肠-脑轴影响人类的认知和社会行为,这意味着肠道菌群在精神分裂症患者中可能起着重要的作用,并有望成为精神分裂症新的治疗靶点。本文综述了肠道菌群与精神分裂症相关性的研究进展,为预防和治疗精神分裂症等精神障碍类疾病提供了理论依据。  相似文献   

11.
FhaC is an outer membrane transporter from Bordetella pertussis belonging to the t wo‐ p artner s ecretion (TPS) pathway with its primary role being the secretion of the virulence factor f ilamentous h aem a gglutinin (FHA). FhaC serves as a model transporter of the TPS pathway and significant work has been done to characterize the role of FhaC in FHA secretion. Recent studies characterized interactions between FHA and the POTRA domains of FhaC, suggesting that secretion may involve a successive translocation mechanism mediated by β‐augmentation and/or electrostatic interactions. Moreover, it was also shown that reconstituted FhaC is necessary and sufficient to transport FHA into proteoliposomes. While the crystal structure of FhaC clearly suggests a role in transport, the putative transport pore is plugged by an N‐terminal α‐helix (H1 helix) that occludes access by FHA. Therefore, it has been proposed that the H1 helix must be expelled from the pore in order for secretion of FHA to occur. However, this has yet to be shown experimentally. Guérin et al. (2014) report the first direct experimental evidence to show that the FhaC H1 helix is quite dynamic and exchanges between closed and open states upon interaction with FHA.  相似文献   

12.
The effect of the fluorine content and nano-structure of fluoridated hydroxyapatite (FHA) on human osteoblast-like (HO) cell behavior were investigated. FHA nanopowders and bulk nanostructured FHA, produced via mechanical alloying and two-step sintering, respectively, were used. The cytotoxicity of FHA nanopowders was assessed by MTT. Cell attachment to the surface of the bulk nanostructured FHA was evaluated by culturing of HO cells. Although HO cells proliferated 10 % more in contact with FHA nanopowders compared to culture medium without FHA nanopowders, an increase in the fluorine content of FHA caused a delay in the cell proliferation by about 2 days. Cell attachment on the bulk nanostructured FHA did not change the fluorine content.  相似文献   

13.
Human Chk2 is a newly identified tumor suppressor protein involved in signaling pathways in response to DNA damage. The protein consists of a forkhead-associated (FHA) domain and a kinase domain. Identification of binding partners of the Chk2FHA domain is important in understanding the roles of Chk2 in signaling. We report development of an approach involving the use of combinatorial libraries, pull-down assays, surface plasmon resonance (SPR), and nuclear magnetic resonance (NMR) methods to identify possible candidates for the binding sites of Chk2FHA. The approach has been used to identify Thr329 of p53 and Thr1852 of breast cancer type 1 susceptibility protein (BRCA1) as very likely biological binding sites of Chk2FHA. The results provide useful leads for further biological analyses of cell signaling involving the FHA domain of Chk2 protein.  相似文献   

14.
On the basis of the results from our laboratory and others, we recently suggested that the ligand specificity of forkhead-associated (FHA) domains is controlled by variations in three major factors: (i) residues interacting with pThr, (ii) residues recognizing the +1 to +3 residues from pThr, and (iii) an extended binding surface. While the first factor has been well established by several solution and crystal structures of FHA-phosphopeptide complexes, the structural bases of the second and third factors are not well understood and are likely to vary greatly between different FHA domains. In this work, we proposed and tested the hypothesis that nonconserved residues G133 and G135 of FHA1 and I681 and D683 of FHA2, located outside of the core FHA region of yeast Rad53 FHA domains, contribute to the specific recognition of the +3 position of different phosphopeptides. By rational mutagenesis of these residues, the specificity of FHA1 has been changed from predominantly pTXXD to be equally acceptable for pTXXD, pTXXL, and pYXL, which are similar to the specificities of the FHA2 domain of Rad53. Conversely, the +3 position specificity of FHA2 has been engineered to be more like FHA1 with the I681A mutation. These results were based on library screening as well as binding analyses of specific phosphopeptides. Furthermore, results of structural analyses by NMR indicate that some of these residues are also important for the structural integrity of the loops.  相似文献   

15.
The causes and consequences of individual differences in animal behavior and stress physiology are increasingly studied in wild animals, yet the possibility that stress physiology underlies individual variation in social behavior has received less attention. In this review, we bring together these study areas and focus on understanding how the activity of the vertebrate neuroendocrine stress axis (HPA‐axis) may underlie individual differences in social behavior in wild animals. We first describe a continuum of vertebrate social behaviors spanning from initial social tendencies (proactive behavior) to social behavior occurring in reproductive contexts (parental care, sexual pair‐bonding) and lastly to social behavior occurring in nonreproductive contexts (nonsexual bonding, group‐level cooperation). We then perform a qualitative review of existing literature to address the correlative and causal association between measures of HPA‐axis activity (glucocorticoid levels or GCs) and each of these types of social behavior. As expected, elevated HPA‐axis activity can inhibit social behavior associated with initial social tendencies (approaching conspecifics) and reproduction. However, elevated HPA‐axis activity may also enhance more elaborate social behavior outside of reproductive contexts, such as alloparental care behavior. In addition, the effect of GCs on social behavior can depend upon the sociality of the stressor (cause of increase in GCs) and the severity of stress (extent of increase in GCs). Our review shows that the while the associations between stress responses and sociality are diverse, the role of HPA‐axis activity behind social behavior may shift toward more facilitating and less inhibiting in more social species, providing insight into how stress physiology and social systems may co‐evolve.  相似文献   

16.
Human gut microbiota (GM) includes a complex and dynamic population of microorganisms that are crucial for well-being and survival of the organism. It has been reported as diverse and relatively stable with shared core microbiota, including Bacteroidetes and Firmicutes as the major dominants. They are the key regulators of body homeostasis, involving both intestinal and extra-intestinal effects by influencing many physiological functions such as metabolism, maintenance of barrier homeostasis, inflammation and hematopoiesis. Any alteration in GM community structures not only trigger gut disorders but also influence other organs and cause associated diseases. In recent past, the GM has been defined as a ‘vital organ’ with its involvement with other organs; thus, establishing a link or a bi- or multidirectional communication axis between the organs via neural, endocrine, immune, humoral and metabolic pathways. Alterations in GM have been linked to several diseases known to humans; although the exact interaction mechanism between the gut and the organs is yet to be defined. In this review, the bidirectional relationship between the gut and the vital human organs was envisaged and discussed under several headings. Furthermore, several disease symptoms were also revisited to redefine the communication network between the gut microbes and the associated organs.  相似文献   

17.
Abstract It has been demonstrated that filamentous haemagglutinin (FHA) purified from Bordetella pertussis is stable on static incubation but is unstable and quickly loses HA activity when incubated with shaking. Methylβcyclodextrin (CD) was found to have a concentration-dependent stabilizing effect on FHA incubated with shaking, suggesting that the ability of CD to enhance yields of FHA in shaken cultures could be wholly or partly due to a stabilizing effect of CD on FHA. However, only weak binding of CD to FHA was demonstrated by an ultrafiltration micropartition method and binding of CD to B. pertussis cells was not related to the presence or absence of FHA on the cell surface.  相似文献   

18.
完全封育方式对天然油松林的影响   总被引:1,自引:1,他引:0  
侯琳  雷瑞德 《生态学报》2007,27(1):288-295
基于敏感性分析,选择了12个反映封育天然油松林植被和土壤特征的指标,建立了封山育林措施实施效果的评价指标体系。根据等间距法,将封山育林措施实施效果综合指数划分为5个等级。采用层次分析法和综合指数法,对封山育林措施在不同封育年限天然次生油松林中的实施效果进行了评价,结果表明:封育16,25,30,45,60a和75a的天然次生油松林,封育措施实施效果综合指数值分别为7.25,6.88,7.82,5.51,4.78和2.79,随着封育年限增加,完全封育方式实施效果逐渐变差,本区天然林完全封育年限最长不应超过45a。封育45a后,应采取适宜树种混交、择伐等培育和经营措施。  相似文献   

19.
The deformation micromechanics of bacterial cellulose (BC) and microfibrillated cellulose (MFC) networks have been investigated using Raman spectroscopy. The Raman spectra of both BC and MFC networks exhibit a band initially located at ≈ 1095 cm(-1). We have used the intensity of this band as a function of rotation angle of the specimens to study the cellulose fibril orientation in BC and MFC networks. We have also used the change in this peak's wavenumber position with applied tensile deformation to probe the stress-transfer behavior of these cellulosic materials. The intensity of this Raman band did not change significantly with rotation angle, indicating an in-plane 2D network of fibrils with uniform random orientation; conversely, a highly oriented flax fiber exhibited a marked change in intensity with rotation angle. Experimental data and theoretical analysis shows that the Raman band shift rate arising from deformation of networks under tension is dependent on the angles between the axis of fibrils, the strain axis, the incident laser polarization direction, and the back scattered polarization configurations. From this analysis, the effective moduli of single fibrils of BC and MFC in the networks were estimated to be in the ranges of 79-88 and 29-36 GPa, respectively. It is shown also that for the model to fit the data it is necessary to use a negative Poisson's ratio for MFC networks and BC networks. Discussion of this in-plane "auxetic" behavior is given.  相似文献   

20.
Three-dimensional measurement of rearfoot motion during running   总被引:4,自引:0,他引:4  
Excessive ranges of motion during running have been speculated to be connected to injuries to the lower extremities. Movement of the foot and lower leg has commonly been studied with two-dimensional techniques. However, differences in the alignment of the longitudinal axis of the foot with the camera axis will produce measurement errors for projected angles of the lower extremities. A three-dimensional approach would not have this limitation. The purpose of this study is to present a three-dimensional model for calculation of angles between lower leg and foot, lower leg and ground, and foot and ground, and to compare results from treadmill running derived from this model with results derived from a two-dimensional model for different alignment angles between foot axis and camera axis. A two camera Selspot system was used to obtain three-dimensional information on motion of the studied segments. It was found that several two-dimensional variables measured from a posterior view are very sensitive to the alignment angle between the foot and the camera axis. Some variables change as much as 1 degrees for every 2 degrees of change of the alignment angle. The large influence of rotations other than the measured one in two-dimensional measurements makes advisable the use of a three-dimensional model when studying motion between foot and lower leg during running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号