首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
With increasing intracellular complexity, a new cell-biological problem that is the allocation of cytoplasmically synthesized proteins to their final destinations within the cell emerged. A special challenge is thereby the translocation of proteins into or across cellular membranes. The underlying mechanisms are only in parts well understood, but it can be assumed that the course of cellular evolution had a deep impact on the design of the required molecular machines. In this article, we aim to summarize the current knowledge and concepts of the evolutionary development of protein trafficking as a necessary premise and consequence of increased cellular complexity.
The evolution of modern cells is arguably the most challenging and important problem the field of biology has ever faced …—Carl R. Woese(Woese 2002)
Current models may accept that all modern eukaryotic cells arose from a single common ancestor (the cenancestral eukaryote), the nature of which is—owing to the lack of direct living or fossil descendants—still highly under debate (de Duve 2007). The chimeric nature of eukaryotic genomes with eubacterial and archaebacterial shares led to a discussion about the origin of this first “proto-eukaryote.” Several models exist (see Fig. 1), which either place the evolution of the nucleus before or after the emergence of the mitochondrion (outlined in Koonin 2010; Martijn and Ettema 2013). According to the different postulated scenarios (summarized in Embley and Martin 2006), eukaryotes in the latter case might have evolved by endosymbiosis between a hydrogen-producing, oxygen-producing, or sulfur-dependent α-proteobacterium and an archaebacterial host (Fig. 1C). The resulting mitochondriate prokaryote would have evolved the nucleus subsequently. In other scenarios (Fig. 1B), the cenancestral eukaryote emerged by cellular fusion or endosymbiosis of a Gram-negative, maybe hydrogen-producing, eubacterium and a methanogenic archaebacterium or eocyte, leading to a primitive but nucleated amitochondrial (archezoan) cell (Embley and Martin 2006, and references therein). As a third alternative, Cavalier-Smith (2002) suggested a common eubacterial ancestor for eukaryotes and archaebacteria (the Neomuran hypothesis) (Fig. 1A).Open in a separate windowFigure 1.Evolution of the last common ancestor of all eukaryotic cells. A schematic depiction of the early eukaryogenesis. Because of the lack of living and fossil descendants, several opposing models are discussed (A–C). The anticipated order of events is shown as a flow chart. For details, see text. (Derived from Embley and Martin 2006; Koonin 2010.)  相似文献   

4.
A developing animal is exposed to both intrinsic and extrinsic stresses. One stress response is caspase activation. Caspase activation not only controls apoptosis but also proliferation, differentiation, cell shape, and cell migration. Caspase activation drives development by executing cell death or nonapoptotic functions in a cell-autonomous manner, and by secreting signaling molecules or generating mechanical forces, in a noncell autonomous manner.Programmed cell death or apoptosis occurs widely during development. During C. elegans development, 131 cells die by caspase CED-3-dependent apoptosis; however, ced-3 mutants do not show significant developmental defects (Ellis and Horvitz 1986). In contrast, studies on caspase mutants in mouse and Drosophila have revealed caspases’ roles in development. During development, cells are exposed to extrinsic and intrinsic stresses, and caspases are activated as one of multiple stress responses that ensure developmental robustness (Fig. 1). Caspases actively regulate animal development through both apoptosis and nonapoptotic functions that involve cell–cell communication in developing cell communities (Miura 2011). This chapter focuses on the in vivo roles of caspases in development and regeneration.Open in a separate windowFigure 1.Caspase activation during development. An embryo undergoes intrinsic and extrinsic stress, which activates caspases to execute both apoptotic and nonapoptotic functions, including cell differentiation and dendrite pruning. Apoptotic cells affect the shape and behavior of their neighboring cells. Caspase-activated cells are shown in dark gray.  相似文献   

5.
The primary goal of mitosis is to partition duplicated chromosomes into daughter cells. Eukaryotic chromosomes are equipped with two distinct classes of intrinsic machineries, cohesin and condensins, that ensure their faithful segregation during mitosis. Cohesin holds sister chromatids together immediately after their synthesis during S phase until the establishment of bipolar attachments to the mitotic spindle in metaphase. Condensins, on the other hand, attempt to “resolve” sister chromatids by counteracting cohesin. The products of the balancing acts of cohesin and condensins are metaphase chromosomes, in which two rod-shaped chromatids are connected primarily at the centromere. In anaphase, this connection is released by the action of separase that proteolytically cleaves the remaining population of cohesin. Recent studies uncover how this series of events might be mechanistically coupled with each other and intricately regulated by a number of regulatory factors.In eukaryotic cells, genomic DNA is packaged into chromatin and stored in the cell nucleus, in which essential chromosomal processes, including DNA replication and gene expression, take place (Fig. 1, interphase). At the onset of mitosis, the nuclear envelope breaks down and chromatin is progressively converted into a discrete set of rod-shaped structures known as metaphase chromosomes (Fig. 1, metaphase). In each chromosome, a pair of sister kinetochores assembles at its centromeric region, and their bioriented attachment to the mitotic spindle acts as a prerequisite for equal segregation of sister chromatids. The linkage between sister chromatids is dissolved at the onset of anaphase, allowing them to be pulled apart to opposite poles of the cell (Fig. 1, anaphase). At the end of mitosis, the nuclear envelope reassembles around two sets of segregated chromatids, leading to the production of genetically identical daughter cells (Fig. 1, telophase).Open in a separate windowFigure 1.Overview of chromosome dynamics during mitosis. In addition to the crucial role of kinetochore–spindle interactions, an intricate balance between cohesive and resolving forces acting on sister chromatid arms (top left, inset) underlies the process of chromosome segregation. See the text for major events in chromosome segregation.Although the centromere–kinetochore region plays a crucial role in the segregation process, sister chromatid arms also undergo dynamic structural changes to facilitate their own separation. Conceptually, such structural changes are an outcome of two balancing forces, namely, cohesive and resolving forces (Fig. 1, top left, inset). The cohesive force holds a pair of duplicated arms until proper timing of separation, otherwise daughter cells would receive too many or too few copies of chromosomes. The resolving force, on the other hand, counteracts the cohesive force, reorganizing each chromosome into a pair of rod-shaped chromatids. From this standpoint, the pathway of chromosome segregation is regarded as a dynamic process, in which the initially robust cohesive force is gradually weakened and eventually dominated by the resolving force. Almost two decades ago, genetic and biochemical studies for the behavior of mitotic chromosomes converged productively, culminating in the discovery of cohesin (Guacci et al. 1997; Michaelis et al. 1997; Losada et al. 1998) and condensin (Hirano et al. 1997; Sutani et al. 1999), which are responsible for the cohesive and resolving forces, respectively. The subsequent characterizations of these two protein complexes have not only transformed our molecular understanding of chromosome dynamics during mitosis and meiosis, but also provided far-reaching implications in genome stability, as well as unexpected links to human diseases. In this article, I summarize recent progress in our understanding of mitotic chromosome dynamics with a major focus on the regulatory networks surrounding cohesin and condensin. I also discuss emerging topics and attempt to clarify outstanding questions in the field.  相似文献   

6.
7.
8.
Auxin and Monocot Development   总被引:2,自引:0,他引:2  
Monocots are known to respond differently to auxinic herbicides; hence, certain herbicides kill broadleaf (i.e., dicot) weeds while leaving lawns (i.e., monocot grasses) intact. In addition, the characters that distinguish monocots from dicots involve structures whose development is controlled by auxin. However, the molecular mechanisms controlling auxin biosynthesis, homeostasis, transport, and signal transduction appear, so far, to be conserved between monocots and dicots, although there are differences in gene copy number and expression leading to diversification in function. This article provides an update on the conservation and diversification of the roles of genes controlling auxin biosynthesis, transport, and signal transduction in root, shoot, and reproductive development in rice and maize.Auxinic herbicides have been used for decades to control dicot weeds in domestic lawns (Fig. 1A), commercial golf courses, and acres of corn, wheat, and barley, yet it is not understand how auxinic herbicides selectively kill dicots and spare monocots (Grossmann 2000; Kelley and Reichers 2007). Monocots, in particular grasses, must perceive or respond differently to exogenous synthetic auxin than dicots. It has been proposed that this selectivity is because of either limited translocation or rapid degradation of exogenous auxin (Gauvrit and Gaillardon 1991; Monaco et al. 2002), altered vascular anatomy (Monaco et al. 2002), or altered perception of auxin in monocots (Kelley and Reichers 2007). To explain these differences, there is a need to further understand the molecular basis of auxin metabolism, transport, and signaling in monocots.Open in a separate windowFigure 1.Differences between monocots and dicots. (A) A dicot weed in a lawn of grasses. Note the difference in morphology of the leaves. (B) Germinating dicot (bean) seedling. Dicots have two cotyledons (cot). Reticulate venation is apparent in the leaves. The stem below the cotyledons is called the hypocotyl (hyp). (C) Germinating monocot (maize) seedling. Monocots have a single cotyledon called the coleoptile (col) in grasses. Parallel venation is apparent in the leaves. The stem below the coleoptile is called the mesocotyl (mes).Auxin, as we have seen in previous articles, plays a major role in vegetative, reproductive, and root development in the model dicot, Arabidopsis. However, monocots have a very different anatomy from dicots (Raven et al. 2005). Many of the characters that distinguish monocots and dicots involve structures whose development is controlled by auxin: (1) As the name implies, monocots have single cotyledons, whereas dicots have two cotyledons (Fig. 1B,C). Auxin transport during embryogenesis may play a role in this difference as cotyledon number defects are often seen in auxin transport mutants (reviewed in Chandler 2008). (2) The vasculature in leaves of dicots is reticulate, whereas the vasculature in monocots is parallel (Fig. 1). Auxin functions in vascular development because many mutants defective in auxin transport, biosynthesis, or signaling have vasculature defects (Scarpella and Meijer 2004). (3) Dicots often produce a primary tap root that produces lateral roots, whereas, in monocots, especially grasses, shoot-borne adventitious roots are the most prominent component of the root system leading to the characteristic fibrous root system (Fig. 2). Auxin induces lateral-root formation in dicots and adventitious root formation in grasses (Hochholdinger and Zimmermann 2008).Open in a separate windowFigure 2.The root system in monocots. (A) Maize seedling showing the primary root (1yR), which has many lateral roots (LR). The seminal roots (SR) are a type of adventitious root produced during embryonic development. Crown roots (CR) are produced from stem tissue. (B) The base of a maize plant showing prop roots (PR), which are adventitious roots produced from basal nodes of the stem later in development.It is not yet clear if auxin controls the differences in morphology seen in dicots versus monocots. However, both conservation and diversification of mechanisms of auxin biosynthesis, homeostasis, transport, and signal transduction have been discovered so far. This article highlights the similarities and the differences in the role of auxin in monocots compared with dicots. First, the genes in each of the pathways are introduced (Part I, Table I) and then the function of these genes in development is discussed with examples from the monocot grasses, maize, and rice (Part II).  相似文献   

9.
We highlight a case on a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophilic infiltrate and thrombus consistent with chronic infarction and torsion. Splenogonadal fusion (SGF) is a rather rare entity, with approximately 184 cases reported in the literature. The most comprehensive review was that of 123 cases completed by Carragher in 1990. Since then, an additional 61 cases have been reported in the scientific literature. We have studied these 61 cases in detail and have included a summary of that information here.Key words: Splenogonadal fusion, Acute scrotumA 10-year-old boy presented with worsening left-sided scrotal pain of 12 hours’ duration. The patient reported similar previous episodes occurring intermittently over the past several months. His past medical history was significant for left hip dysplasia, requiring multiple hip surgeries. On examination, he was found to have an edematous left hemiscrotum with a left testicle that was rigid, tender, and noted to be in a transverse lie. The ultrasound revealed possible polyorchism, with two testicles on the left and one on the right (Figure 1), and left epididymitis. One of the left testicles demonstrated a loss of blood flow consistent with testicular torsion (Figure 2).Open in a separate windowFigure 1Ultrasound of the left hemiscrotum reveals two spherical structures; the one on the left is heterogeneous and hyperdense in comparison to the right.Open in a separate windowFigure 2Doppler ultrasound of left hemiscrotum. No evidence of blood flow to left spherical structure.The patient was taken to the operating room for immediate scrotal exploration. A normalappearing left testicle with a normal epididymis was noted. However, two accessory structures were noted, one of which was torsed 720°; (Figure 3). An inguinal incision was then made and a third accessory structure was noted. All three structures were connected with fibrous tissue, giving a “rosary bead” appearance. The left accessory structures were removed, a left testicular biopsy was taken, and bilateral scrotal orchipexies were performed.Open in a separate windowFigure 3Torsed accessory spleen with splenogonadal fusion.Pathology revealed a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophillic infiltrate and thrombus consistent with chronic infarction and torsion (Figure 4).Open in a separate windowFigure 4Splenogonadal fusion, continuous type with three accessory structures.  相似文献   

10.
Signal transduction is regulated by protein–protein interactions. In the case of the ErbB family of receptor tyrosine kinases (RTKs), the precise nature of these interactions remains a topic of debate. In this review, we describe state-of-the-art imaging techniques that are providing new details into receptor dynamics, clustering, and interactions. We present the general principles of these techniques, their limitations, and the unique observations they provide about ErbB spatiotemporal organization.Signal transduction is associated with dramatic spatial and temporal changes in membrane protein distribution. Although the biochemical events downstream of membrane receptor activation are often well characterized, the initiating events within the plasma membrane remain unclear. Many cell surface receptors have been shown to redistribute into clusters in response to ligand binding (Metzger 1992). Therefore, correlating membrane receptor activation with dynamics and aggregation state is essential to understanding cell signaling.The role of receptor aggregation is of particular interest in the case of receptor tyrosine kinases (RTKs). It is generally accepted that ligand binding to the extracellular domain of RTKs induces dimerization, whether ligand- or receptor-mediated (Lemmon and Schlessinger 2010). However, there is evidence that some RTKs exist as oligomers in the absence of ligand, whereas others require higher-order oligomerization for activation (Lemmon and Schlessinger 2010). Understanding the fundamental interactions that regulate RTK signaling still remains an important focus in the field.Over the past decade, imaging technologies and biological tools have developed to a point such that questions about protein dynamics, clustering, and interactions can now be addressed in living cells (Fig. 1). These techniques reveal information about protein behavior on a spatial and temporal scale that is not provided by traditional biochemical assays. In this review, we will discuss the application of these advanced imaging technologies to the study of the ErbB family of RTKs.Open in a separate windowFigure 1.Summary of imaging techniques for quantifying receptor clustering, dynamics, and interactions.  相似文献   

11.
Chemotaxis—the directed movement of cells in a gradient of chemoattractant—is essential for neutrophils to crawl to sites of inflammation and infection and for Dictyostelium discoideum (D. discoideum) to aggregate during morphogenesis. Chemoattractant-induced activation of spatially localized cellular signals causes cells to polarize and move toward the highest concentration of the chemoattractant. Extensive studies have been devoted to achieving a better understanding of the mechanism(s) used by a neutrophil to choose its direction of polarity and to crawl effectively in response to chemoattractant gradients. Recent technological advances are beginning to reveal many fascinating details of the intracellular signaling components that spatially direct the cytoskeleton of neutrophils and D. discoideum and the complementary mechanisms that make the cell''s front distinct from its back.Chemotaxis—the directed movement of cells in a gradient of chemoattractant—allows leukocytes to seek out sites of inflammation and infection, amoebas of Dictyostelium discoideum (D. discoideum) to aggregate, neurons to send projections to specific regions of the brain to find their synaptic partners, yeast cells to mate, and fibroblasts to move into the wound space (Fig. 1). In each case, chemoattractant-induced activation of spatially localized cellular signals causes cells to polarize and move toward the highest concentration of the chemoattractant. During chemotaxis, filamentous actin (F-actin) is polymerized asymmetrically at the upgradient edge of the cell (leading edge), providing the necessary force to thrust projections of the plasma membrane in the proper direction (see Mullins 2009). Neutrophilic leukocytes (neutrophils), for instance, can polarize and move up very shallow gradients, with a chemoattractant concentration ∼2% higher at the front than the back (Fig. 2) (Devreotes and Zigmond 1988). To restrict actin polymerization to the leading edge in such a shallow gradient, neutrophils must create a much steeper internal gradient of regulatory signals. In addition, distinctive actin–myosin contractile complexes are also formed at the sides and back of the cells (Fig. 2). The ability to create such distinctive segregation of actin assemblies enables neutrophils to move nearly 50 times more quickly than fibroblasts. The polarization response is self-organizing, which occurs even when the attractant concentration is uniform and apparently stimulating all portions of the plasma membrane at the same intensity; in the absence of a gradient, the direction of polarity is random, but all cells can be induced to polarize (Fig. 2). Thus, neutrophil polarization to chemoattractant stimulation represents a striking example of symmetry breaking from an unpolarized state to a polarized one.Open in a separate windowFigure 1.Examples of chemotaxis. (A) A human neutrophil chasing a Staphylococcus aureus microorganism on a blood film among red blood cells, notable for their dark color and principally spherical shape (imaged by David Rogers, courtesy of Thomas P. Stossel). Bar, 10 µm. Chemotaxis is also necessary for (B) D. discoideum to form multicellular aggregates during development (courtesy of M.J. Grimson and R.L. Blanton, Texas Tech University), and (C) for axons to find their way in the developing nervous system. Photo provided by Kathryn Tosney, University of Miami.Open in a separate windowFigure 2.(A–D) Polarization of a neutrophil in response to gradient of chemoattractant. Nomarski images of unpolarized neutrophil responding to a micropipette containing the chemoattractant fMLP (white circle) at (A) 5 s, (B) 30 s, (C) 81 s, and (D) 129 s of stimulation. Bar = 5 µm. (Figure is taken from Weiner et al. 1999, with permission.) Human neutrophils stimulated with fMLP show highly polarized morphology and asymmetric cytoskeletal assemblies. (E–G) Human neutrophils were stimulated by a uniform concentration of fMLP (100 nM) and fixed 2 min after stimulations. Fixed cells were stained for F-actin with rhodamine-phalloidin (E, red) and an antibody raised against activated myosin II (phosphorylated specifically at Ser19, p[19]-MLC) (F, green). These fluorescent images are merged with Nomarski image in (G). Bars, 10 µm.To enter an infected tissue, neutrophils require chemoattractants produced by host cells and microorganisms to migrate to the sites and infection and inflammation. Neutrophil chemotaxis also contributes to many inflammatory and autoimmune diseases, including rheumatoid arthritis, ischemia-reperfusion syndrome, acute respiratory distress, and systemic inflammatory response syndromes. Although the critical physiological functions of neutrophils have made their chemoattractants and chemoattractant receptors targets of intense investigation, understanding of the neutrophil polarity and directional migration has until recently lagged behind that of other cells. Over the past decade, experimentation with knockout mice and human neutrophil cell lines has begun to shed light on the complex intracellular signals responsible for neutrophil polarity. In this article, I summarize recent advances in the study of chemotactic signals in neutrophils, with some of the discussion also devoted to a related model—chemotaxis of D. discoideum. These soil amoebas grow as single cells, but on starvation chemotax into multicellular aggregates in response to secreted chemoattractants such as adenosine 3′,5′-monophosphate (cAMP).  相似文献   

12.
Cyanobacterial Heterocysts   总被引:1,自引:0,他引:1  
Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function together to accommodate the oxygen-sensitive process of nitrogen fixation. This article focuses on recent research on heterocyst development, including morphogenesis, transport of molecules between cells in a filament, differential gene expression, and pattern formation.Organisms composed of multiple differentiated cell types can possess structures, functions, and behaviors that are more diverse and efficient than those of unicellular organisms. Among multicellular prokaryotes, heterocyst-forming cyanobacteria offer an excellent model for the study of cellular differentiation and multicellular pattern formation. Cyanobacteria are a large group of Gram-negative prokaryotes that perform oxygenic photosynthesis. They have evolved multiple specialized cell types, including nitrogen-fixing heterocysts, spore-like akinetes, and the cells of motile hormogonia filaments. Of these, the development of heterocysts in the filamentous cyanobacterium Anabaena (also Nostoc) sp. strain PCC 7120 (hereafter Anabaena PCC 7120) has been the best studied. Heterocyst development offers a striking example of cellular differentiation and developmental biology in a very simple form: Filaments are composed of only two cell types and these are arrayed in a one-dimensional pattern similar to beads on a string (Figs. 1 and and22).Open in a separate windowFigure 1.Heterocyst development in Anabaena PCC 7120. (A) Anabaena PCC 7120 grown in medium containing a source of combined nitrogen grows as filaments of photosynthetic vegetative cells. (B) In the absence of combined nitrogen, heterocysts differentiate at semiregular intervals, forming a developmental pattern of single heterocysts every 10 to 20 vegetative cells along filaments. Heterocysts are often larger than vegetative cells, have a thicker multilayered envelope, and usually contain cyanophycin granules at their poles adjacent to a vegetative cell.Open in a separate windowFigure 2.Heterocyst development in Anabaena PCC 7120. Filaments of the wild type carrying a patS-gfp reporter grown in medium containing nitrate are composed of vegetative cells (A), and have undergone heterocyst development 1 d after transfer to medium without combined nitrogen (B). A patS mutant strain carrying the same patS-gfp reporter grown in media containing nitrate contains a small number of heterocysts (C), and 1 d after transfer to medium without combined nitrogen shows a higher than normal frequency of heterocysts and an abnormal developmental pattern (D). (A, B, C, D) Merged DIC (grayscale), autofluorescence of photosynthetic pigments (red), and patS-gfp reporter fluorescence (green) microscopic images; arrowheads indicate heterocysts; asterisks indicate proheterocysts; size bar, 5 µm. (E, F) Transmission electron micrographs of wild-type vegetative cells (V) and a heterocyst (H) at the end of a filament; T, thylakoid membranes; PS, polysaccharide layer; GL, glycolipid layer; C, polar cyanophycin granule; size bar, 0.2 µm.Many cyanobacterial species are capable of nitrogen fixation. However, oxygenic photosynthesis and nitrogen fixation are incompatible processes because nitrogenase is inactivated by oxygen. Cyanobacteria mainly use two mechanisms to separate these activities: a biological circadian clock to separate them temporally, and multicellularity and cellular differentiation to separate them spatially. For example, the unicellular Cyanothece sp. strain ATCC 51142 stores glycogen during the day and fixes nitrogen at night (Toepel et al. 2008), whereas the filamentous Trichodesmium erythraeum IMS101 fixes nitrogen during the day in groups of specialized cells (Sandh et al. 2009). Heterocyst-forming cyanobacteria differentiate highly specialized cells to provide fixed nitrogen to the vegetative cells in a filament.In the presence of a source of combined nitrogen such as nitrate or ammonium, Anabaena PCC 7120 grows as long filaments containing hundreds of photosynthetic vegetative cells. In the absence of combined nitrogen, it produces heterocysts, which are terminally differentiated nitrogen-fixing cells that form at semiregular intervals between stretches of vegetative cells to produce a multicellular pattern of single heterocysts every ten to twenty vegetative cells along filaments (Figs. 1 and and2).2). Some heterocyst-forming cyanobacteria show different regulation or display different developmental patterns but these topics are beyond the scope of this article. Heterocyst development involves integration of multiple external and internal signals, communication between the cells in a filament, and temporal and spatial regulation of genes and cellular processes. The study of heterocyst development in Anabaena PCC 7120 has proven to be an excellent model for the study of cell fate determination, pattern formation, and differential gene expression during prokaryotic multicellular evelopment. Various aspects of heterocyst development, signaling, and regulation have been the subject of several recent reviews (Meeks and Elhai 2002; Forchhammer 2004; Herrero et al. 2004; Zhang et al. 2006; Aldea et al. 2008; Zhao and Wolk 2008).Although beyond the scope of this article, it should be noted that cyanobacteria have recently attracted increased attention because of their important roles in environmental carbon and nitrogen fixation (Montoya et al. 2004), and their potential for providing renewable chemicals and biofuels (Dismukes et al. 2008).  相似文献   

13.
14.
Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.All ribosomes are composed of two subunits, both of which are built from RNA and protein (Figs. (Figs.11 and and2).2). Bacterial ribosomes, for example of Escherichia coli, contain a small subunit (SSU) composed of one 16S ribosomal RNA (rRNA) and 21 ribosomal proteins (r-proteins) (Figs. (Figs.1A1A and and1B)1B) and a large subunit (LSU) containing 5S and 23S rRNAs and 33 r-proteins (Fig. 2A). Crystal structures of prokaryotic ribosomal particles, namely, the Thermus thermophilus SSU (Schluenzen et al. 2000; Wimberly et al. 2000), Haloarcula marismortui and Deinococcus radiodurans LSU (Ban et al. 2000; Harms et al. 2001), and E. coli and T. thermophilus 70S ribosomes (Yusupov et al. 2001; Schuwirth et al. 2005; Selmer et al. 2006), reveal the complex architecture that derives from the network of interactions connecting the individual r-proteins with each other and with the rRNAs (Brodersen et al. 2002; Klein et al. 2004). The 16S rRNA can be divided into four domains, which together with the r-proteins constitute the structural landmarks of the SSU (Wimberly et al. 2000) (Fig. 1A): The 5′ and 3′ minor (h44) domains with proteins S4, S5, S12, S16, S17, and S20 constitute the body (and spur or foot) of the SSU; the 3′ major domain forms the head, which is protein rich, containing S2, S3, S7, S9, S10, S13, S14, and S19; whereas the central domain makes up the platform by interacting with proteins S1, S6, S8, S11, S15, and S18 (Fig. 1B). The rRNA of the LSU can be divided into seven domains (including the 5S rRNA as domain VII), which—in contrast to the SSU—are intricately interwoven with the r-proteins as well as each other (Ban et al. 2000; Brodersen et al. 2002) (Fig. 2A). Structural landmarks on the LSU include the central protuberance (CP) and the flexible L1 and L7/L12 stalks (Fig. 2A).Open in a separate windowFigure 1.The bacterial and eukaryotic small ribosomal subunit. (A,B) Interface (upper) and solvent (lower) views of the bacterial 30S subunit (Jenner et al. 2010a). (A) 16S rRNA domains and associated r-proteins colored distinctly: b, body (blue); h, head (red); pt, platform (green); and h44, helix 44 (yellow). (B) 16S rRNA colored gray and r-proteins colored distinctly and labeled. (CE) Interface and solvent views of the eukaryotic 40S subunit (Rabl et al. 2011), with (C) eukaryotic-specific r-proteins (red) and rRNA (pink) shown relative to conserved rRNA (gray) and r-proteins (blue), and with (D,E) 18S rRNA colored gray and r-proteins colored distinctly and labeled.Open in a separate windowFigure 2.The bacterial and eukaryotic large ribosomal subunit. (A) Interface (upper) and solvent (lower) views of the bacterial 50S subunit (Jenner et al. 2010b), with 23S rRNA domains and bacterial-specific (light blue) and conserved (blue) r-proteins colored distinctly: cp, central protuberance; L1, L1 stalk; and St, L7/L12 stalk (or P-stalk in archeaa/eukaryotes). (BE) Interface and solvent views of the eukaryotic 60S subunit (Klinge et al. 2011), with (B) eukaryotic-specific r-proteins (red) and rRNA (pink) shown relative to conserved rRNA (gray) and r-proteins (blue), (C) eukaryotic-specific expansion segments (ES) colored distinctly, and (D,E) 28S rRNA colored gray and r-proteins colored distinctly and labeled.In contrast to their bacterial counterparts, eukaryotic ribosomes are much larger and more complex, containing additional rRNA in the form of so-called expansion segments (ES) as well as many additional r-proteins and r-protein extensions (Figs. 1C–E and and2C–E).2C–E). Compared with the ∼4500 nucleotides of rRNA and 54 r-proteins of the bacterial 70S ribosome, eukaryotic 80S ribosomes contain >5500 nucleotides of rRNA (SSU, 18S rRNA; LSU, 5S, 5.8S, and 25S rRNA) and 80 (79 in yeast) r-proteins. The first structural models for the eukaryotic (yeast) ribosome were built using 15-Å cryo–electon microscopy (cryo-EM) maps fitted with structures of the bacterial SSU (Wimberly et al. 2000) and archaeal LSU (Ban et al. 2000), thus identifying the location of a total of 46 eukaryotic r-proteins with bacterial and/or archaeal homologs as well as many ES (Spahn et al. 2001a). Subsequent cryo-EM reconstructions led to the localization of additional eukaryotic r-proteins, RACK1 (Sengupta et al. 2004) and S19e (Taylor et al. 2009) on the SSU and L30e (Halic et al. 2005) on the LSU, as well as more complete models of the rRNA derived from cryo-EM maps of canine and fungal 80S ribosomes at ∼9 Å (Chandramouli et al. 2008; Taylor et al. 2009). Recent cryo-EM reconstructions of plant and yeast 80S translating ribosomes at 5.5–6.1 Å enabled the correct placement of an additional six and 10 r-proteins on the SSU and LSU, respectively, as well as the tracing of many eukaryotic-specific r-protein extensions (Armache et al. 2010a,b). The full assignment of the r-proteins in the yeast and fungal 80S ribosomes, however, only became possible with the improved resolution (3.0–3.9 Å) resulting from the crystal structures of the SSU and LSU from Tetrahymena thermophila (Klinge et al. 2011; Rabl et al. 2011) and the Saccharomyces cerevisiae 80S ribosome (Figs. (Figs.1D,E1D,E and and2D,E)2D,E) (Ben-Shem et al. 2011).  相似文献   

15.
Few mechanisms provide alternatives to morphogen gradients for producing spatial patterns of cells in development. One possibility is based on the sorting out of cells that initially differentiate in a salt and pepper mixture and then physically move to create coherent tissues. Here, we describe the evidence suggesting this is the major mode of patterning in Dictyostelium. In addition, we discuss whether convergent evolution could have produced a conceptually similar mechanism in other organisms.A limited number of processes are thought to regulate the differentiation of specialized cell types and their organization to form larger scale structures, such as organs or limbs, during embryonic development. First, early embryological experiments revealed a patterning process that depends on special “organizing” regions in the embryo. This idea was encapsulated as “positional information” and led to the concept of morphogen gradients (Fig. 1) (Wolpert 1996). In addition, cytoplasmic determinants have been shown to direct development along different lines when they are partitioned unequally between daughter cells by asymmetric cell division (Betschinger and Knoblich 2004). Finally, short-range inductive signaling can specify cells at a local level and when reiterated produces highly ordered structures (Simpson 1990; Freeman 1997; Meinhardt and Gierer 2000).Open in a separate windowFigure 1.Alternative ways of patterning cells during development. (A) Patterning by “positional information”: A group of undifferentiated cells is patterned by a morphogen diffusing from a pre-established source, producing a concentration gradient. Cells respond according to the local morphogen concentration, becoming red, white, or blue. (B, C) Patterning without positional information: This is a two-step process in which different cell types first differentiate mixed up with each other, and then sort out. The initial differentiation can be controlled by strictly local interactions between the cells, as in lateral inhibition (B), or by a global signal to which cells respond with different sensitivities and whose concentration they regulate by negative feedback (C). Once sorting has occurred, the global inducer forms a reverse gradient, which could then convey positional information for further patterning events.The question then arises of whether evolution has devised any further global patterning mechanisms. One possibility that has been repeatedly considered, but not firmly established as a general mechanism, is based on sorting out. In this process, pattern is produced in two steps: (1) Different cell types are initially specified from a precursor pool independent of their position to produce a salt and pepper mixture and (2) the mixture of cell types is resolved into discrete tissues by the physical movement and sorting out of the cells (Fig. 1). Consequently, this mechanism does not involve positional information. However, it can actually provide the conditions under which positional signaling and morphogen gradients can arise, if the resolved tissues then act as sources and sinks for signal molecules.We first describe the powerful evidence that this alternative patterning process is used during the developmental cycle of the social amoeba Dictyostelium discoideum, and then consider the possibility that this patterning strategy may be used more widely.  相似文献   

16.
17.
18.
Mammalian immunity evolved by the process of natural selection that produced differential survival and reproduction advantages through combinations of hereditary traits underlying the response to pathogens. Primitive animals sense the presence of microbial pathogens through recognition of pathogen-derived molecules in their rudimentary immune and nervous systems. No molecular biological mechanism assigns primacy of pathogen sensing mechanisms to immune cells over neurons. Rather, in animals as diverse as Caenorhabditis elegans to mammals, neural reflexes are activated by the presence of pathogens and transduce neural mechanisms that control the development of immunity. A coming revolution in immunological thinking will require immunologists to incorporate neural circuits into understanding pathogen signal transduction, and the molecular mechanisms of learning, that culminate in immunity.On considering memory, one finds an ironic perspective, tainted by shadows of two major scientific fields that, historically at least, did not collaborate. Immunological memory, mediated by lymphocytes, and neurological memory, mediated by neurons, evolved over millions of years in response to environmental changes. Closer inspection within both fields reveals key features of common origin between neural and immune information collection and retrieval. Major evolutionary advantages arose at points of intersection of these systems, manifested as beneficial physiological responses to environmental stimuli during infection, injury, and metabolic stress. In 1989, Charles Janeway proposed that the first revolution in immunological thinking led to the domination of the humoral theory of immunity, and that an approaching second revolution would integrate innate and adaptive immunity by understanding the role of pathogen-associated molecular pattern receptors (Janeway 1989). Today, I believe that the groundwork has been laid for a third revolution in immunological thinking that will integrate the role of neurological feedback circuits into innate and adaptive immunity, including the role of molecular mechanisms through which neurons sense microbes and regulate the output of hematopoietic-derived immune cells. I also suggest that costimulation of neural reflex circuits by microbial products plays a major role in the immune response to infection, and to the subsequent development of immunity (Fig. 1). If correct, this idea could revolutionize our thinking about immunity and take us beyond innate and adaptive immunity to an integrated view of neurological and immunological recognition and learning.Open in a separate windowFigure 1.Pathogens or products of cellular inflammation and injury costimulate immune cells and neurons during the earliest stages of infection. Neural input activates reflex circuits, which modulate the nervous system and the immune system. Hematopoietic-derived cellular responses produce humoral and cellular signals that influence immune cells and neurons. These signal transduction pathways culminate in mediating the behavior of the animal and in initiating learning.  相似文献   

19.
Sertoli cell tumors are very rare testicular tumors, representing 0.4% to 1.5% of all testicular malignancies. They are subclassified as classic, large-cell calcifying, and sclerosing Sertoli cell tumors (SSCT) based on distinct clinical features. Only 42 cases of SSCTs have been reported in the literature. We present a case of a 23-year-old man diagnosed with SSCT.Key words: Testicular neoplasm, Sertoli cell tumor, Sclerosing Sertoli cell tumorA 23-year-old man was referred to the Cleveland Clinic Department of Urology (Cleveland, OH) for an incidentally detected right testicular mass. The mass was identified during a work-up for transient left testicular discomfort. His only notable medical history was nephrolithiasis. There was no personal or family history of testicular cancer or cryptorchidism. On physical examination, he was a well-nourished, well-masculinized young man without gynecomastia. Testicular examination revealed normal volume and consistency bilaterally without other relevant findings. Testicular ultrasonography demonstrated an 8 mm × 6 mm × 6 mm hypoechoic, solid mass in the posterior right testicle with peripheral flow on color Doppler (Figure 1).Open in a separate windowFigure 1Testicular ultrasound demonstrating an 8 mm × 6 mm × 6 mm hypoechoic, solid mass in the posterior right testicle (blue arrows).The remainder of the ultrasound examination yielded normal results. Lactic dehydrogenase, B-human chorionic gonadotropin, and α-fetoprotein levels were all within the normal range. After a thorough review of the options, the patient was then taken to the operating room for inguinal exploration. Intraoperative ultrasound confirmed a superficial 8-mm hypoechoic testis lesion. A whiteyellow, well-demarcated nodule was widely excised and a frozen section was sent to pathology for examination. The frozen section examination revealed the lesion to be a neoplasm with differential diagnosis including sclerosing Sertoli cell tumor (SSCT), adenomatoid tumor, and a variant of Leydig cell tumor. Because the final diagnosis could not be determined from frozen section, the decision was made to perform a right radical orchiectomy. Pathologic examination revealed a grossly unifocal, well-circumscribed, white, firm mass of 0.8 cm. Microscopically the lesion was composed of solid and hollow tubules and occasional anastomosing cords distributed within the hypocellular, densely collagenous stroma. Although the lesion was somewhat well circumscribed, entrapped seminiferous tubules with Sertoli-only cells were present within the tumor (Figure 2). Tumor cells had pale or eosinophilic cytoplasm with small and dark nuclei with inconspicuous nucleoli. The tumor was confined to the testis and margins were negative. A diagnosis of SSCT was reached, supported by positive immunostain results for steroidogenic factor 1, focal inhibin, and calretinin expression, and negative stain results for cytokeratin AE1/AE3 and epithelial membrane antigen in the tumor (Figure 3). The postoperative course was unremarkable. Computed tomography scan of the abdomen and pelvis and chest radiograph were negative for metastatic disease.Open in a separate windowFigure 2Low-power examination revealing a well-circumscribed tumor composed of solid and hollow tubules and occasional anastomosing cords distributed within the hypocellular, densely collagenous stroma. Hematoxylin and eosin stain, original magnification ×40. (B) High-power examination. Note entrapped seminiferous tubules lacking spermatogenesis. Hematoxylin and eosin stain, original magnification ×100.Open in a separate windowFigure 3Nuclear expression of steroidogenic factor 1 in the tumor as well as benign Sertoli cells in entrapped seminiferous tubules (original magnification ×200). (B) Focal calretinin expression in the tumor (inhibin had a similar staining pattern; original magnification ×100).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号