首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients.  相似文献   

2.
Despite full voluntary effort, neuromuscular activation of the quadriceps femoris muscle appears inhibited during slow concentric and eccentric contractions. Our aim was to compare neuromuscular activation during maximal voluntary concentric and eccentric quadriceps contractions, hypothesizing that inhibition of neuromuscular activation diminishes with resistance training. In 15 men, pretraining electromyographic activity of the quadriceps muscles [vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF)] was 17-36% lower during slow and fast (30 and 240 degrees/s) eccentric and slow concentric contractions compared with fast concentric contractions. After 14 wk of heavy resistance training, neuromuscular inhibition was reduced for VL and VM and was completely removed for RF. Concurrently, electromyographic activity increased 21-52, 22-29, and 16-32% for VL, VM, and RF, respectively. In addition, median power frequency decreased for VL and RF. Eccentric quadriceps strength increased 15-17%, whereas slow and fast concentric strength increased 15 and 8%, respectively. Pre- and posttraining median power frequency did not differ between eccentric and concentric contractions. In conclusion, quadriceps motoneuron activation was lower during maximal voluntary eccentric and slow concentric contractions compared with during fast concentric contraction in untrained subjects, and, after heavy resistance training, this inhibition in neuromuscular activation was reduced.  相似文献   

3.
This study aimed to analyze the effects of the contraction mode (isotonic vs. isokinetic concentric conditions), the joint angle and the investigated muscle on agonist muscle activity and antagonist muscle co-activity during standardized knee extensions. Twelve healthy adult subjects performed three sets of isotonic knee extensions at 40% of their maximal voluntary isometric torque followed by three sets of maximal isokinetic knee extensions on an isokinetic dynamometer. For each set, the mean angular velocity and the total external amount of work performed were standardized during the two contraction modes. Surface electromyographic activity of vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), semitendinosus (ST) and biceps femoris (BF) muscles was recorded. Root mean square values were then calculated for each 10° between 85° and 45° of knee extension (0° = horizontal position). Results show that agonist muscle activity and antagonist muscle co-activity levels are significantly greater in isotonic mode compared to isokinetic mode. Quadriceps activity and hamstrings co-activity are significantly lower at knee extended position in both contraction modes. Considering agonist muscles, VL reveals a specific pattern of activity compared to VM and RF; whereas considering hamstring muscles, BF shows a significantly higher co-activity than ST in both contraction modes. Results of this study confirmed our hypothesis that higher quadriceps activity is required during isotonic movements compared to isokinetic movements leading to a higher hamstrings co-activity.  相似文献   

4.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

5.
A.  D.  E.  K.  E.  C.   《Journal of electromyography and kinesiology》2006,16(6):661-668
The purpose of this study was to examine the differences in electromyographic activity of agonist and antagonist knee musculature between a maximal and a submaximal isokinetic fatigue protocol. Fourteen healthy males (age: 24.3 ± 2.5 years) performed 25 maximal (MIFP) and 60 submaximal (SIFP) isokinetic concentric efforts of the knee extensors at 60° s−1, across a 90° range of motion. The two protocols were performed a week apart. The EMG activity of vastus medialis (VM), vastus lateralis (VL) and biceps femoris (BF) were recorded using surface electrodes. The peak torque (PT) and average EMG (aEMG) were expressed as percentages of pre-fatigue maximal value. One-way analysis of variance indicated a significant (p < 0.05) decline of PT during the maximal (45.7%) and submaximal (46.8%) protocols. During the maximal test, the VM and VL aEMG initially increased and then decreased. In contrast, VM and VL aEMG continuously increased during submaximal testing (p < 0.05). The antagonist (BF) aEMG remained constant during maximal test but it increased significantly and then declined during the submaximal testing. The above results indicate that agonist and antagonist activity depends on the intensity of the selected isokinetic fatigue test.  相似文献   

6.
The purpose of this study was to compare the electromyographic (EMG) amplitudes of the quadriceps femoris (QF) muscles during a maximum voluntary isometric contraction (MVIC) to submaximal and maximal dynamic concentric contractions during active exercises. A secondary purpose was to provide information about the type of contraction that may be most appropriate for normalization of EMG data if one wants to determine if a lower extremity closed chain exercise is of sufficient intensity to produce a strengthening response for the QF muscles. Sixty-eight young healthy volunteers (39 female, 29 male) with no lower extremity pain or injury participated in the study. Surface electrodes recorded EMG amplitudes from the vastus medialis obliquus (VMO), rectus femoris (RF), and vastus lateralis (VL) muscles during 5 different isometric and dynamic concentric exercises. The last 27 subjects performed an additional 4 exercises from which a second data set could be analyzed. Maximum isokinetic knee extension and moderate to maximum closed chain exercises activated the QF significantly more than a MVIC. A 40-cm. lateral step-up exercise produced EMG amplitudes of the QF muscles of similar magnitude as the maximum isokinetic knee extension exercises and would be an exercise that could be considered for strengthening the QF muscles. Most published EMG studies of exercises for the QF have been performed by comparing EMG amplitudes during dynamic exercises to a MVIC. This procedure can lead one to overestimate the value of a dynamic exercise for strengthening the QF muscles. We suggest that when studying the efficacy of a dynamic closed chain exercise for strengthening the QF muscles, the exercise be normalized to a dynamic maximum muscle contraction such as that obtained with knee extension during isokinetic testing.  相似文献   

7.
BackgroundAgonist and antagonist co-activation plays an important role for stabilizing the knee joint, especially after fatigue. However, whether selective fatigue of agonists or antagonist muscles would cause different changes in muscle activation patterns is unknown.HypothesisKnee extension fatigue would have a higher influence on landing biomechanics compared with a knee flexion protocol.Study designRepeated-measures design.MethodsTwenty healthy subjects (10 males and 10 females) performed two sets of repeated maximal isokinetic concentric efforts of the knee extensors (KE) at 120° s?1 until they could no longer consistently produce 30% of maximum torque. On a separate day, a similar knee flexion (KF) fatigue protocol was also performed. Single leg landings from 30 cm drop height were performed before, in the middle and after the end of the fatigue test. The mean normalized electromyographic (EMG) signal of the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF) and gastrocnemius (GAS) at selected landing phases were determined before, during and after fatigue. Quadriceps:hamstrings (Q:H) EMG ratio as well as sagittal hip and knee angles and vertical ground reaction force (GRF) were also recorded.ResultsTwo-way analysis of variance designs showed that KE fatigue resulted in significantly lower GRF and higher knee flexion angles at initial contact while maximum hip and knee flexion also increased (p < 0.05). This was accompanied by a significant decline of BF EMG, unaltered EMG of vastii and GAS muscles and increased Q:H ratio. In contrast, KF fatigue had no effects on vGRFs but it was accompanied by increased activation of VM, BF and GAS while the Q:H increased during before landing and decreased after impact.ConclusionFatigue responses during landing are highly dependent on the muscle which is fatigued.  相似文献   

8.
The purpose of this study was to investigate the effect of elastic compression on muscle strength, electromyographic (EMG), and mechanomyographic (MMG) responses of quadriceps femoris during isometric and isokinetic contractions. Twelve participants performed 5 s isometric maximal voluntary contractions (MVC) and 25 consecutive and maximal isokinetic knee extensions at 60 and 300 °/s with no (control, CC), medium (MC), and high (HC) compression applied to the muscle. The EMG and MMG signals were collected simultaneously with muscle isometric and isokinetic strength data. The results showed that the elevated compression did not improve peak torque, peak power, average power, total work, and regression of torque in the isometric and isokinetic contractions. However, the root mean squared value of EMG in both HC and MC significantly decreased compared with CC at 60 and 300 °/s (p < 0.01). Furthermore, the EMG mean power frequency in HC was significantly higher than that in CC at 60 °/s (p < 0.05) whereas no significant compression effect was found in the MMG mean power frequency. These findings provide preliminary evidence suggesting that the increase in local compression pressure may effectively increase muscle efficiency and this might be beneficial in reducing muscle fatigue during concentric isokinetic muscle contractions.  相似文献   

9.
The purpose of this study was to investigate neuromuscular activation of the vastus intermedius (VI) muscle during fatiguing contraction. Seven healthy men performed sustained isometric knee extension exercise at 50% of maximal voluntary contraction until exhaustion. During the fatiguing task, surface electromyograms (EMGs) were recorded from four muscle components of the quadriceps femoris muscle group: VI; vastus lateralis (VL); vastus medialis (VM); and rectus femoris (RF) muscles. For the VI muscle, our recently developed technique was used. Root mean square (RMS) and median frequency (MF) of the surface EMG signal were calculated and these variables were then normalized by the value at the beginning of the task. Normalized RMS of the VI muscle resembled those of the other three muscles at all given times. At 95% of exhaustion time, normalized MF of the VI muscle was significantly higher than that of the VL muscle (p < 0.05). These results suggested that neuromuscular activation is not consistent between the VI and VL muscles at the exhaustion for isometric submaximal contraction and this could reflect the dissimilar intramuscular metabolism between these muscles.  相似文献   

10.
AIM: This study examined the electromyographic (EMG) activity of knee extensor agonists and a knee extensor antagonist muscle during fatiguing isometric extensions across a range of force levels. METHODS: Five female subjects performed isometric knee extensions at 25%, 50%, 75% and 100% of their maximal voluntary contraction (MVC) with the knee flexed to 75 degrees. Surface EMG (SEMG) was recorded with bipolar electrodes from the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF) and the root-mean-squared (RMS) amplitude and the percentage frequency compression of these recordings were calculated. Commonality and cross talk between recordings were also examined. RESULTS: Cross talk between recordings was deemed negligible despite significant levels of commonality between the agonist and antagonist SEMG, which was attributed to common drive. SEMG RMS amplitude increased significantly for all muscles during the 25%, 50%, 75% MVC knee extensions until task failure, and decreased significantly for 100% MVC. The frequency spectrum of the SEMG compressed significantly for all muscles and % MVC levels. The VM, VL and BF SEMG recordings responded similarly to fatigue. The RF's frequency spectrum compressed to a significantly higher degree. CONCLUSIONS: The VM, VL, RF, and BF fatigue in parallel, with high similarity between VM, VL and BF, giving support to the concept of a shared agonist-antagonist motoneuron pool.  相似文献   

11.
The aim of this study was to investigate the reliability of peak torque and surface electromyography (EMG) variable's root mean square (RMS) and mean frequency (MNF) during an endurance test consisting of repetitive maximum concentric knee extensions. Muscle fatigue has been quantified in several ways, and in isokinetic testing it is based on a set of repetitive contractions. To assess test-retest reliability, two sets of 100 dynamic maximum concentric knee extensions were performed using an isokinetic dynamometer. The two series were separated by 7-8 days. The subjects relaxed during the passive flexion phase. Twenty (10 men and 10 women) clinically healthy subjects volunteered.Peak torque and EMG from rectus femoris, vastus medialis, vastus lateralis and biceps femoris were recorded. RMS and MNF were calculated from the EMG signal. The reliability was calculated with intraclass correlation coefficient ICC (1.1) and standard error of measurements (SEM). The reliability of peak torque was good (ICC=0.93) and SEM showed low values. ICC was good for absolute RMS of rectus femoris (ICC>/=0.80), vastus medialis (ICC>/=0.88) and vastus lateralis (ICC>/=0.82) and MNF of rectus femoris (ICC>/=0.82) and vastus medialis (ICC>/=0.83). Peak torque, and MNF and RMS of rectus femoris and vastus medialis are reliable variables obtained from an isokinetic endurance test of the knee extensors.  相似文献   

12.
目的:分析膝骨性关节炎患者(KOA)登梯时下肢肌群肌电活动与关节角冲量与正常人的差异,为康复方案设计提供生物力学参考。方法:采用Qualisys三维运动分析系统以及Delsys无线表面肌电系统对招募10名符合纳排标准的膝骨性关节炎患者和10名正常人进行登梯活动的步态检测,采用下肢肌群均方根值、股内外侧肌协同收缩比值、股二头肌和股外侧肌共同活动比值和髋、膝关节在冠状面和矢状面上角冲量对比分析与两组登梯时下肢肌群收缩模式对关节负荷的影响。结果:与正常对照相比,上梯时膝骨性关节炎患者股直肌均方根值RMS(Root Mean Square)增大(P0.05),膝骨性关节炎患者股内外侧肌收缩均方根值比值(RMS(Vastus Medialis)VM/(Vastus Lateralis)VL)减小(P0.05),膝骨性关节炎患者腘绳肌与股外侧肌收缩比值(RMS(Biceps Femoris)BF/VL增大(P0.05)。下梯时,膝骨性关节炎患者股直肌均方根值(RMS)增大(P0.05),臀大肌均方根值(RMS)减小(P0.05),股内外侧肌收缩均方根比值(RMS VM/VL)减小(P0.05)。上梯时,膝骨性关节炎患者髋、膝关节冠状面上的关节角冲量大于正常人(P0.05),膝关节在矢状面上关节角冲量大于正常组(P0.05),下梯髋、膝关节冠状面、矢状面上的角冲量无统计学差异(P0.05)。KOA组VM/VL、BF/VL与膝关节在冠状面和矢状面上的角冲量的改变没有直接的相关性(P0.05)。结论:膝骨性关节炎患者在登梯活动时股直肌的收缩活动增加,股内外侧肌的协同收缩下降,主动肌与拮抗肌的共同收缩增加,膝骨性关节炎患者在面对登梯活动时下肢肌群选择性激活和高激活状态协调一致,促进关节稳定。虽然下肢神经肌肉的收缩模式和膝关节负荷之间没有直接的相关性,可能是对膝关节负荷产生影响的生物力学因素较多,神经肌肉的收缩模式只是部分影响因素,后续将增加其他生物力学因素进一步研究。  相似文献   

13.
The effect of movement velocity and fatigue on the reciprocal coactivation of the quadriceps and hamstrings was investigated through analysis of the root mean square (RMS) and the median frequency (MDF) of surface electromyography for the vastus medialis (VM), vastus lateralis (VL), medial hamstrings (MH) and biceps femoris (BF). Fourteen subjects performed six continuous isokinetic knee extension and flexion movements at 60 degrees, 180 degrees and 300 degrees s(-1), and 30 continuous movements at 300 degrees s(-1) to examine muscular fatigue patterns. Statistical analyses revealed that the RMS activity of the VM displayed greater coactivation than the VL (P<0.01) and the BF displayed greater coactivation than the MH (P<0.0001). There was no effect of velocity on the coactivation levels of the VM, the VL, or the MH; however, there was an effect of velocity on the coactivation levels of the BF (P<0.0001). Relative to MDF activity, the MH shifted upward as velocity increased (P<0. 01) while the BF decreased between 180 and 300 degrees s(-1) (P<0. 01). Results of the muscular fatigue test indicated that the RMS activity of the VM showed a higher degree of coactivation than the VL (P<0.01) and the BF showed approximately three times the coactivation level of the MH (P<0.001). The MDF of the VL and MH shifted downward as the repetitions progressed (P<0.01) with no changes for the VM or for the BF. Results of this study suggest that during isokinetic testing, both the VM and BF have significantly greater reciprocal coactivation levels when compared to the VL and MH, respectively. In addition, these results suggest that motor unit recruitment patterns of the VM and VL and the MH and BF differ with regard to the effects of velocity and fatigue.  相似文献   

14.
In comparison to isometric muscle action models, little is known about the electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses to fatiguing dynamic muscle actions. Simultaneous examination of the EMG and MMG amplitude and MPF may provide additional insight with regard to the motor control strategies utilized by the superficial muscles of the quadriceps femoris during a concentric fatiguing task. Thus, the purpose of this study was to examine the EMG and MMG amplitude and MPF responses of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during repeated, concentric muscle actions of the dominant leg. Seventeen adults (21.8+/-1.7 yr) performed 50 consecutive, maximal concentric muscle actions of the dominant leg extensors on a Biodex System 3 Dynamometer at velocities of 60 degrees s(-1) and 300 degrees s(-1). Bipolar surface electrode arrangements were placed over the mid portion of the VL, RF, and VM muscles with a MMG contact sensor placed adjacent to the superior EMG electrode on each muscle. Torque, MMG and EMG amplitude and MPF values were calculated for each of the 50 repetitions. All values were normalized to the value recorded during the first repetition and then averaged across all subjects. The cubic decreases in torque at 60 degrees s(-1) (R2 = 0.972) and 300 degrees s(-1) (R2 = 0.931) was associated with a decline in torque of 59+/-24% and 53+/-11%, respectively. The muscle and velocity specific responses for the MMG amplitude and MPF demonstrated that each of the superficial muscles of the quadriceps femoris uniquely contributed to the control of force output across the 50 repetitions. These results suggested that the MMG responses for the VL, RF, VM during a fatiguing task may be influenced by a number of factors such as fiber type differences, alterations in activation strategy including motor unit recruitment and firing rate and possibly muscle wisdom.  相似文献   

15.
The objective of this study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during fatiguing knee extensions. Thirty young adults were evaluated for their one-repetition maximum (1RM) during a seated, right-leg, inertial knee extension. All subjects then completed a single set of repeated knee extensions at 50% 1RM, to failure. Subjects performed a knee extension (concentric phase), held the weight with the knee extended for 2s (isometric phase), and lowered the weight in a controlled manner (eccentric phase). Raw EMG of the vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscles were full-wave rectified, integrated and normalized to the 1RM EMG, for each respective phase and repetition. The EMG median frequency (f(med)) was computed during the isometric phase. An increase in QF muscle EMG was observed during the concentric phase across the exercise duration. VL EMG was greater than the VM and RF muscles during the isometric phase, in which no significant changes occurred in any of the muscles across the exercise duration. A significant decrease in EMG across the exercise duration was observed during the eccentric phase, with the VL EMG greater than the VM and RF muscles. A greater decrease in VL and RF muscle f(med) during the isometric phase, than the VM muscle, was observed with no gender differences. The findings demonstrated differential recruitment of the superficial QF muscle, depending on the contraction mode during dynamic knee extension exercise, where VL muscle dominance appears to manifest across the concentric-isometric-eccentric transition.  相似文献   

16.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

17.
The objective of the present study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during dynamic sub-maximal knee extension exercise between young adult men and women. Thirty subjects completed, in a random order, 2 sub-maximal repetitions of single-leg knee extensions at 20-90% of their one-repetition maximum (1RM). Vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscle integrated EMG (IEMG) during each sub-maximal lift was normalized to the respective 1RM for concentric, isometric and eccentric modes. The EMG median frequency (f(med)) was determined over the isometric mode. Men attained a significantly (p<0.05) greater knee angular velocity than the women during the concentric mode (83.6+/-19.1 degrees /s and 67.4+/-19.8 degrees /s, respectively). RF IEMG was significantly lesser than the VM (p=0.014) and VL (p<0.001) muscles, when collapsed across all contraction modes, loads, and sex. Overall IEMG was significantly greater during the concentric (p<0.001) and isometric (p<0.001) modes, than the eccentric mode. Men generated significantly (p=0.03) greater VL muscle IEMG than the women, while the opposite pattern emerged for the RF muscle. VM f(med) (105.1+/-11.1Hz) was significantly lesser than the VL (180.3+/-19.5Hz) and RF (127.7+/-13.9Hz) muscles across all lifting intensities, while the men (137.7+/-10.7Hz) generated greater values than the women (129.0+/-11.4Hz). The findings demonstrate a reduction in QF muscle activation across the concentric to eccentric transition, which may be related to the mode-specific velocity pattern.  相似文献   

18.
IntroductionIn this study, we tested two assumptions that have been made in experimental studies on muscle mechanics: (i) that the torque-angle properties are similar among agonistic muscles crossing a joint, and (ii) that the sum of the torque capacity of individual muscles adds up to the torque capacity of the agonist group.MethodsMaximum isometric torque measurements were made using a specifically designed animal knee extension dynamometer for the intact rabbit quadriceps muscles (n = 10) for knee angles between 60 and 120°. The nerve branches of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) muscles were carefully dissected, and a custom made nerve cuff electrode was implanted on each branch. Knee extensor torques were measured for four maximal activation conditions at each knee angle: VL activation, VM activation, RF activation, and activation of all three muscles together.ResultsWith the exception of VL, the torque-angle relationships of the individual muscles did not have the shape of the torque-angle relationship obtained when all muscles were activated simultaneously. Furthermore, the maximum torque capacity obtained by adding the individual torque capacities of VL, VM and RF was approximately 20% higher than the torques produced when the three muscles were activated simultaneously.DiscussionThese results bring into question our understanding of in-vivo muscle contraction and challenge assumptions that are sometimes made in human and animal muscle force analyses.  相似文献   

19.
The aim of this study was to examine superficial quadriceps femoris (QF) EMG and torque at perceived voluntary contraction efforts. Thirty subjects (15 males, 15 females) performed 9, 5 s, sub-maximal contractions at prescribed levels of perceived voluntary effort at points 1-9 on an 11-point scale (0-10), in a random order. Surface electromyograms (EMG) of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles, as well as QF peak torque (PT), average torque (AT), and torque coefficient of variation (C.V.), were sampled. The raw EMG signals were full-wave rectified and integrated over the middle three s of each contraction. The sampled EMG signals, and PT and AT at each perceived exertion level were normalized to the average of three maximal voluntary contractions. The normalized EMG and torque values at each perceived exertion level were then compared to equivalent percent values (i.e., 10% at a perceived level of 1). The results demonstrated that at all perceived exertion levels, with the exception of the RF at a level of 2 which was equivalent to 20%, and the VL and RF muscles at a level 1 in which activation was greater than 10%, activation was significantly less than the equivalent percent value at each point on the scale. VM EMG was found to be less than the VL and RF from contraction levels 3-9. PT was shown to be less than the equivalent percent values at contraction levels 6-9. The AT was found to be lower than the expected percent value at perceived effort levels 2-9. Torque C.V. was not found to be different across the range of perceived effort. The major findings of this study suggested that humans over-estimate voluntary QF muscle torque when guided by perceptual sensations. It is also suggested that the produced EMG signals revealed a reliance on the VL muscle for knee extensor torque generation at sub-maximal levels.  相似文献   

20.
In many activities the knee joint flexes and extends actively with the involvement of both knee extensor and flexor muscle groups. Consequently the examination of the muscle activity during reciprocal movements may provide useful information on the function of these two muscle groups during fatigued conditions. Therefore, the purpose of this study was to examine the activity of antagonist muscles during a reciprocal isokinetic fatigue test of the knee extensors and flexors. Fifteen healthy pubertal males (age 13.8+/-0.8 years) performed 22 maximal isokinetic concentric efforts of the knee extensors at 60 degrees s(-1). The EMG activity of vastus medialis (VM), vastus lateralis (VL) and biceps femoris (BF) was recorded using surface electrodes. The motion ranged from 100 to 0 degrees of knee flexion. The average moment and average EMG (AEMG) at 10-30 degrees, 31-50 degrees, 51-70 degrees and 71-90 degrees angular position intervals were calculated for each repetition. Twenty efforts were further analyzed. Two-way repeated measures analysis of variance (ANOVA) tests indicated a significant decline of moment during the test (p<0.025). The VM and VL AEMG at longer muscle lengths increased significantly as the test progressed whereas the AEMG at short muscle lengths (10-30 degrees ) did not significantly change. The agonist AEMG of BF during the first repetition demonstrated a significant increase after the ninth repetition (p<0.025). The antagonist AEMG of all muscles did not change significantly during the test. These results indicate that there is consistent antagonist activity during both extension and flexion phases of an isokinetic reciprocal fatigue test. It can be concluded that during an isokinetic reciprocal fatigue test, both knee extensors and flexors are fatigued. However, this condition does not have a significant effect on the EMG patterns of these muscles when acting as antagonists during the test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号