首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Varying the degree of weight-bearing (WB) and/or knee flexion (KF) angle during a plantar-flexion maximal voluntary isometric contraction (MVIC) has been proposed to alter soleus and/or gastrocnemius medialis and lateralis activation. This study compared the surface EMG signals from the triceps surae of 27 men and 27 women during WB and non weight bearing (NWB) plantar-flexion MVICs performed at 0° and 45° of KF. The aim was to determine which condition was most effective at eliciting the greatest EMG signals from soleus, gastrocnemius medialis, and gastrocnemius lateralis, respectively, for subsequent use for the normalization of EMG signals. WB was more effective than NWB at eliciting the greatest signals from soleus (p = 0.0021), but there was no difference with respect to gastrocnemius medialis and lateralis (p ? 0.2482). Although the greatest EMG signals during MVICs were more frequently elicited at 0° of KF from gastrocnemius medialis and lateralis, and at 45° from soleus (p < 0.001); neither angle consistently captured peak gastrocnemius medialis, gastrocnemius lateralis or soleus activity. The present findings encourage more consistent use of WB plantar flexion MVICs for soleus normalization; confirm that both WB and NWB procedures can elicit peak gastrocnemius activity; and emphasize the fact that no single KF angle consistently evokes selective maximal activity of any individual triceps surae muscle.  相似文献   

2.
The aim of the current study was to analyze the activation characteristics and potential compartmentalization of the latissimus dorsi (LD) muscle during common maximal voluntary isometric contractions (MVICs) and functional dynamic tasks. Surface electromyography (sEMG) was used to measure activation magnitudes from four electrode sites (referenced to the T10, T12, L1 & L4 LD vertebral origins) across the fanning muscle belly of the LD. In addition, EMG waveforms were cross-correlated to study temporal activation timing between electrode sites (T10-T12, T12-L1, L1-L4 & T10-L4). The MVICs that were tested included a humeral adduction, humeral adduction with internal rotation, a chest-supported row and a humeral extension. Dynamic movements included sagittal lift/lowers from the floor to knee, knee to hip and hip to shoulder. No magnitude-based (p = 0.6116) or temporal-based differences were observed between electrode sites during the MVIC trials. During dynamic movements no temporal-based, but some magnitude-based differences between electrode sites were observed to be present; these differences were small in magnitude and were observed for both the maximum (p = 0.0002) and mean (p = 0.0002) EMG magnitudes. No clear pattern of compartmentalization was uncovered in the contractions studied here. In addition to these findings, it was determined that the most effective MVIC technique for LD EMG normalization purposes was a chest-supported row MVIC, paired with a T12 electrode site.  相似文献   

3.
PurposeExternal knee moments are reliable to measure knee load but it does not take into account muscle activity. Considering that muscle co-activation increases compressive forces at the knee joint, identifying relationships between muscle co-activations and knee joint load would complement the investigation of the knee loading in subjects with knee osteoarthritis. The purpose of this study was to identify relationships between muscle co-activation and external knee moments during walking in subjects with medial knee osteoarthritis.Methods19 controls (11 males, aged 56.6 ± 5, and BMI 25.2 ± 3.3) and 25 subjects with medial knee osteoarthritis (12 males, aged 57.3 ± 5.3, and BMI 28.2 ± 4) were included in this study. Knee adduction and flexion moments, and co-activation (ratios and sums of quadriceps, hamstring, and gastrocnemius) were assessed during walking and compared between groups. The relationship between knee moments and co-activation was investigated in both groups.FindingsSubjects with knee osteoarthritis presented a moderate and strong correlation between co-activation (ratios and sums) and knee moments.InterpretationMuscle co-activation should be used to measure the contribution of quadriceps, hamstring, and gastrocnemius on knee loading. This information would cooperate to develop a more comprehensive approach of knee loading in this population.  相似文献   

4.
This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p < 0.05). An effect of group was showed in both kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation.  相似文献   

5.
Electromyographic (EMG) studies into gluteus medius (GMed) typically involve surface EMG electrodes. Previous comparisons of surface and fine wire electrode recordings in other muscles during high load isometric tasks suggest that recordings between electrodes are comparable when the muscle is contracting at a high intensity, however, surface electrodes record additional activity when the muscle is contracting at a low intensity. The purpose of this study was to compare surface and fine wire recordings of GMed at high and low intensities of muscle contractions, under high load conditions (maximum voluntary isometric contractions, MVICs). Mann–Whitney U tests compared median electrode recordings during three MVIC hip actions; abduction, internal rotation and external rotation, in nine healthy adults. There were no significant differences between electrode recordings in positions that evoked a high intensity contraction (internal rotation and abduction, fine wire activity >77% MVIC; effect size, ES < 0.42; p > 0.277). During external rotation, the intensity of muscle activity was low (4.2% MVIC), and surface electrodes recorded additional myoelectric activity (ES = 0.67, p = 0.002). At low levels of muscle activity during high load isometric tasks, the use of surface electrodes may result in additional myoelectric recordings of GMed, potentially reflective of cross-talk from surrounding muscles.  相似文献   

6.
Although the possibility that the vastus intermedius (VI) muscle contributes to flexion of the knee joint has been suggested previously, the detail of its functional role in knee flexion is not well understood. The purpose of this study was to examine the antagonist coactivation of VI during isometric knee flexion. Thirteen men performed 25–100% of maximal voluntary contraction (MVC) at 90°, 120°, and 150° knee joint angles. Surface electromyography (EMG) of the four individual muscles in the quadriceps femoris (QF) was recorded and normalized by the EMG signals during isometric knee extension at MVC. Cross-talk on VI EMG signal was assessed based on the median frequency response to selective cooling of hamstring muscles. Normalized EMG of the VI was significantly higher than that of the other synergistic QF muscles at each knee joint angle (all P < 0.05) with minimum cross-talk from the hamstrings to VI. There were significant correlations between the EMG signal of the hamstrings and VI (r = 0.55–0.85, P < 0.001). These results suggest that VI acts as a primary antagonistic muscle of QF during knee flexion, and that VI is presumably a main contributor to knee joint stabilization.  相似文献   

7.
The influence of the knee flexion on muscle activation and transmissibility during whole body vibration is controversially discussed in the literature. In this study, 34 individuals had electromyography activity (EMG) of the vastus lateralis and the acceleration assessed while squatting with 60° and 90° of knee flexion either with or without whole-body vibration (WBV). The conditions were maintained for 10 s with 1 min of rest between each condition. The main findings were (1) the larger the angle of knee flexion (90° vs. 60°), the greater the EMG (p < 0.001), with no difference on acceleration transmissibility; (2) for both angles of knee flexion, the addition of WBV produced no significant difference in EMG and higher acceleration compared to without WBV (p < 0.001). These results suggest that the larger the knee flexion angle (60° vs. 90°), the greater the muscle activation without acceleration modification. However, the addition of WBV increases the transmissibility of acceleration in the lower limbs without modification in EMG of vastus lateralis.  相似文献   

8.
The Nordic Hamstring Exercise (NHE) has been introduced as a training tool to improve the efficiency of eccentric hamstring muscle contraction. The aim of this study was to perform a biomechanical analysis of the NHE. Eighteen participants (20.4 ± 1.9 years) performed two sets of five repetitions each of the NHE and maximal eccentric voluntary contraction (MEVC) of the knee flexors on an isokinetic dynamometer whilst knee angular displacement and electrical activity (EMG) of biceps femoris were measured. EMG was on average higher during the NHE (134.3% of the MEVC). During the forward fall of the NHE, the angle at which a sharp increase in downward velocity occurred varied between 47.9 and 80.5 deg, while the peak knee angular velocity (pVelocity) varied between 47.7 and 132.8 deg s?1. A significant negative correlation was found between pVelocity and peak EMG (r = ?0.62, p < 0.01) and EMG at 45 deg (r = ?0.75, p < 0.01) expressed as a percentage of peak MEVC EMG. Some of the variables analyzed exhibited good to excellent levels of intra- and inter-session reliability. This type of analysis could be used to indirectly monitor the level of eccentric strength of the hamstring muscles while performing the NHE and potentially any training- or injury-related changes.  相似文献   

9.
Previous studies evaluated 3D human jaw movements using kinematic analysis systems during mouth opening, but information on the reliability of such measurements is still scarce. The purpose of this study was to analyze within- and between-session reliabilities, inter-rater reliability, standard error of measurement (SEM), minimum detectable change (MDC) and consistency of agreement across raters and sessions of 3D kinematic variables during maximum mouth opening (MMO). Thirty-six asymptomatic subjects from both genders were evaluated on two different days, five to seven days apart. Subjects performed three MMO movements while kinematic data were collected. Intraclass correlation coefficient (ICC), SEM and MDC were calculated for all variables, and Bland-Altman plots were constructed. Jaw radius and width were the most reproducible variables (ICC > 0.81) and demonstrated minor error. Incisor displacement during MMO and angular movements in the sagittal plane presented good reliability (ICC from 0.61 to 0.8) and small errors and, consequently, could be used in future studies with the same methodology and population. The variables with smaller amplitudes (condylar translations during mouth opening and closing and mandibular movements on the frontal and transversal planes) were less reliable (ICC < 0.61) and presented larger SEM and MDC. Although ICC, SEM and MDC showed less between-session reproducibility than within-session and inter-rater, the limits of agreement were larger in inter-rater comparisons. In future studies care must be taken with variables collected on different days and with mandibular movements in the frontal and transversal planes.  相似文献   

10.
BackgroundLow back pain (LBP) development has been associated with occupational standing. Increased hip and trunk muscle co-activation is considered to be predisposing for LBP development during standing in previously asymptomatic individuals. The purpose of this work was to investigate muscle activation and LBP responses to a prescribed exercise program. Pain-developing (PD) individuals were expected to have decreased LBP and muscle co-activation following exercise intervention.MethodsElectromyography (EMG) data were recorded from trunk and hip muscle groups during 2-h of standing. An increase of >10 mm on visual analog scale (VAS) during standing was threshold for PD categorization. Participants were assigned to progressive exercise program with weekly supervision or control (usual activity) for 4 weeks then re-tested.ResultsForty percent were categorized as PD on day 1, VAS = 24.2 (±4.0) mm. PD exercisers (PDEX) had lower VAS scores (8.93 ± 3.66 mm) than PD control (PDCON) (16.5 ± 6.3 mm) on day 2 (p = 0.007). Male PDEX had decreased gluteus medius co-activation levels (p < 0.05) on day 2.DiscussionThe exercise program proved beneficial in reducing LBP during standing. There were changes in muscle activation patterns previously associated with LBP. Predisposing factors for LBP during standing were shown to change positively with appropriate exercise intervention.  相似文献   

11.
The aim of the study was to examine how individuals of different ages react to forward balance perturbations. Thirty-six volunteers, divided into four groups [young (YA), middle-age (MA40 and MA50), and old (OA) adults], stood on a platform that was either kept stationary, moved backward, or moved forward. EMG onset, EMG time-to-peak, iEMG, and agonist–antagonist co-activation, as well as cumulative angular excursion, maximum center of mass (CM) backward displacement, and CM time-to-reversal were assessed after forward translations. Postural synergies were assessed using principal component analysis (PCA). The results showed that OA activated their muscles later than YA [TA = 25 ms, RF = 17 ms] and OA and MA50 reached the peak of activation later than YA [MA50:TA = 23 ms, RF = 32 ms, OA:TA = 28 ms, RF = 21 ms]. Moreover, OA kept a higher level of activation longer than all younger groups. No differences among groups were observed in co-activation, kinematic, and PCA variables. We conclude that changes in temporal EMG patterns can be seen in the fifth decade. However, such changes have no effect on the CM horizontal displacement and CM time-to-reversal after perturbation, which cannot be justified by the use of different postural synergies, suggesting that temporal aspects of muscle activation could play a minor role in controlling excessive CM displacements after perturbations.  相似文献   

12.
Jumping on an elastic surface produces a number of sensory and motor adjustments. This effect caused by jumping on the trampoline has been called “trampoline aftereffect”. The objective of the present study was to investigate the neuromuscular response related with this effect. A group of 15 subjects took part in an experimental session, where simultaneous biomechanical and electromyographic (EMG) recordings were performed during the execution of maximal countermovement jumps (CMJs) before and after jumping on an elastic surface. We assessed motor performance (leg stiffness, jump height, peak force, vertical motion of center of mass and stored and returned energy) and EMG activation patterns of the leg muscles. The results showed a significant increase (p ? 0.05) of the RMS EMG of knee extensors during the eccentric phase of the jump performed immediately after the exposure phase to the elastic surface (CMJ1), and a significant increase (p ? 0.05) in the levels of co-activation of the muscles crossing the ankle joint during the concentric phase of the same jump. Results related with motor performance of CMJ1 showed a significant increase in the leg stiffness (p ? 0.01) due to a lower vertical motion of center of mass (CoM) (p ? 0.005), a significant decrease in jump height (p ? 0.01), and a significantly smaller stored and returned energy (p ? 0.01). The changes found during the execution of CMJ1 may result from a mismatch between sensory feedback and the efferent copy.  相似文献   

13.
The roundhouse kick is a powerful attack in Taekwondo. Most athletes intently perform this kick for scoring in competition. Therefore, kinematic and kinetic analyzes of this kick were the topics of interest; however, they were separately investigated and rarely recorded for impact force. Our objectives were to investigate knee and ankle joint kinematics and electromyographic (EMG) activity of leg muscle and compare them between high-impact (HI) and low-impact (LO) kicks. Sixteen male black-belt Taekwondo athletes performed five roundhouse kicks at their maximal effort. Electrogoniometer sensors measured angular motions of ankle and knee joints. Surface EMG activities were recorded for tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris muscles. Based on maximal impact forces, the athletes were classified into HI and LO groups. All athletes in both groups showed greater activation of rectus femoris than other muscles. The HI group only showed significantly less plantarflexion angles than the LO group during preimpact and impact phases (P < 0.05). During the impact phase, the HI group demonstrated significantly greater biceps femoris activation than the LO group (P < 0.05). In conclusion, rectus femoris activation could predominantly contribute to the powerful roundhouse kicks. Moreover, high biceps femoris co-activation and optimal angle of ankle plantarflexion of about 35° could help achieve the high impact force.  相似文献   

14.
Vaginal probes may induce changes in pelvic floor muscle (PFM) recruitment by the very presence of the probes. Fine-wire electrodes allow us to detect muscle activation parameters without altering the natural position and shape of the PFMs. The purpose of this study was to determine whether PFM activation is altered by changes in sensory feedback, muscle length or tissue position caused by two different vaginal probes used to record surface electromyography (EMG). Twelve continent women (30.1 ± 5.4 years), performed PFM maximal voluntary contractions (MVCs) in supine while fine-wire EMG was recorded bilaterally from the PFMs under three conditions: (a) without any probe inserted into the vagina, (b) while a Femiscan? probe was in situ, and (c) while a Periform? vaginal probe was in situ. The reliability of the fine wire EMG data was assessed using intra-class correlation coefficients (ICCs) and coefficients of variation (CV). A repeated measures analysis of variance (ANOVA) model was used to determine if there were differences in EMG amplitude recorded when the different vaginal probes were in situ. For each condition the between-trial reliability was excellent, ICC(3,1) = 0.93–0.96, (p < 0.001) and CV = 11.2–21.8%. There were no differences in peak EMG amplitude recorded during the MVCs across the three conditions (no probe 63.4 ± 48.4 μV, Femiscan? 55.3 ± 42.4 μV, Periform? 59.4 ± 42.2 μV, p = 0.178). These results suggest that women produce consistent MVCs over multiple contractions, and that PFM muscle activation is not affected by different probes inserted into the vagina.  相似文献   

15.
It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG–force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20–100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG–force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles.  相似文献   

16.
This study compared abdominal electromyographic (EMG) activity during the performance of Pilates’ exercises. 16 females participated in the study. EMG signals of the rectus abdominis (RA) and external oblique (EO) were recorded during Longspine performed on the mat, Cadillac, and Reformer and the Teaser performed on the mat, Cadillac, and Combo-chair. Values were normalized by the EMG peak of a dynamic task and divided in concentric and eccentric phases. Longspine performed on the mat increased EO activity in the concentric phase more than on the Reformer and the Cadillac (Mean Difference (MD) = 12.2%; 95% Confidence Interval (CI) [3.36; 21.04]; p = .04). Differences in the eccentric phase of the RA favored the mat compared to the Reformer (MD = 5.20%; 95% CI [−0.55; 10.95]; p = .02). Significant differences in eccentric contraction of the RA were found for teaser exercise performed on the mat versus Cadillac (MD = 1.1%; 95% CI [−4.13; 6.33]; p = .04) and the mat versus the Combo-chair (MD = 6.3%; 95% CI [1.31; 11.29]; p = .005). Higher concentric activation values for the EO were found when the teaser exercise was performed on the Cadillac. Exercises performed on the mat required greater rectus abdominis activation.  相似文献   

17.
The effect of posterior cruciate ligament (PCL) on muscle co-activation (MCO) is not known though MCO has been extensively studied. The purpose of the study was to investigate the effect of PCL creep on MCO and on joint moment around the knee. Twelve males and twelve females volunteered for this study. PCL creep was estimated via tibial posterior displacement which was elicited by a 20 kg dumbbell hanged on horizontal shank near patella for 10 min. Electromyography activity from both rectus femoris and biceps femoris as well as muscle strength on the right thigh was recorded synchronically during knee isokinetic flexion–extension performance in speed of 60 deg/s as well as 120 deg/s on a dynamometer before and after PCL creep. A one-way ANOVA with repeated measures was used to evaluate the effect of creep, gender and speed. The results showed that significant tibial posterior displacement was found (p = 0.01) in both male and female groups. No significant increase of joint moment was found in flexion as well as in extension phase in both female and male groups. There was a significant effect of speed (p = 0.036) on joint moment in extension phase. Co-activation index (CI) decreased significantly (p = 0.049) in extension phase with a significant effect of gender (p  0.001). It was concluded that creep developed in PCL due to static posterior load on the proximal tibia could significantly elicit the increase of the activation of agonist muscles but with no compensation from the antagonist in flexion as well as in extension phase. The creep significantly elicited the decrease of the antagonist–agonist CI in extension phase. MCO in females was reduced significantly in extension phase. It was suggested that PCL creep might be one of risk factors to the knee injury in sports activity.  相似文献   

18.
BackgroundAgonist and antagonist co-activation plays an important role for stabilizing the knee joint, especially after fatigue. However, whether selective fatigue of agonists or antagonist muscles would cause different changes in muscle activation patterns is unknown.HypothesisKnee extension fatigue would have a higher influence on landing biomechanics compared with a knee flexion protocol.Study designRepeated-measures design.MethodsTwenty healthy subjects (10 males and 10 females) performed two sets of repeated maximal isokinetic concentric efforts of the knee extensors (KE) at 120° s?1 until they could no longer consistently produce 30% of maximum torque. On a separate day, a similar knee flexion (KF) fatigue protocol was also performed. Single leg landings from 30 cm drop height were performed before, in the middle and after the end of the fatigue test. The mean normalized electromyographic (EMG) signal of the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF) and gastrocnemius (GAS) at selected landing phases were determined before, during and after fatigue. Quadriceps:hamstrings (Q:H) EMG ratio as well as sagittal hip and knee angles and vertical ground reaction force (GRF) were also recorded.ResultsTwo-way analysis of variance designs showed that KE fatigue resulted in significantly lower GRF and higher knee flexion angles at initial contact while maximum hip and knee flexion also increased (p < 0.05). This was accompanied by a significant decline of BF EMG, unaltered EMG of vastii and GAS muscles and increased Q:H ratio. In contrast, KF fatigue had no effects on vGRFs but it was accompanied by increased activation of VM, BF and GAS while the Q:H increased during before landing and decreased after impact.ConclusionFatigue responses during landing are highly dependent on the muscle which is fatigued.  相似文献   

19.
A linear encoder measuring vertical displacement during the heel-rise endurance test (HRET) enables the assessment of work and maximum height in addition to the traditional repetitions measure. We aimed to compare the test-retest reliability and agreement of these three outcome measures. Thirty-eight healthy participants (20 females, 18 males) performed the HRET on two occasions separated by a minimum of seven days. Reliability was assessed by the intraclass correlation coefficient (ICC) and agreement by a range of measures including the standard error of measurement (SEM), coefficient of variation (CV), and 95% limits of agreement (LoA). Reliability for repetitions (ICC = 0.77 (0.66, 0.85)) was equivalent to work (ICC = 0.84 (95% CI 0.76, 0.89)) and maximum height (ICC = 0.85 (0.77, 0.90)). Agreement for repetitions (SEM = 6.7 (5.8, 7.9); CV = 13.9% (11.9, 16.8%); LoA = −1.9 ± 37.2%) was equivalent to work (SEM = 419 J (361, 499 J); CV = 13.1% (11.2, 15.8%); LoA = 0.1 ± 34.8%) with maximum height superior (SEM = 0.8 cm (0.6, 1.0 cm); CV = 6.6% (5.7, 7.9%); LoA = 1.3 ± 17.1%). Work and maximum height demonstrated acceptable reliability and agreement that was at least equivalent to the traditional repetitions measure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号