首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Instantaneous contractile characteristics of skeletal muscle, during movement tasks, can be determined and related to steady state mechanical properties such as the force–length relationship with the use of ultrasound imaging. A previous investigation into the contractile characteristics of the vastus lateralis (VL) during cycling has shown that fascicles operate on the “weak” descending limb of the force–length relationship, thus not taking advantage of the “strong” plateau region. The purpose of this study was to investigate if VL fascicle lengths change from sub-maximal to maximal cycling conditions, and if maximal cycling results in VL fascicle lengths which operate across the plateau of the force–length relationship. Fifteen healthy male subjects (age 20.9±1.8 yr, wt. 67.0±6.3 kg, ht. 176.7±7.2 cm) were tested to establish the maximal force–length relationship for the VL through ten maximal isometric contractions at various knee angles. Subjects then cycled on an SRM cycle ergometer at cadences of 50 and 80 revolutions per minute at 100 W, 250 W, and maximal effort. Fascicle lengths were determined at crank angles of 0, 90, and 180°. Fascicles operated at or near the plateau of the maximal force–length relationship for maximal cycling, while operating on the descending limb during sub-maximal conditions for both cadences. However, when comparing the fascicle operating range for the sub-maximal cycling conditions to the corresponding sub-maximal force–length relationships, the VL now also operated across the plateau region. We concluded from these results that regardless of cycling effort, the VL operated through the ideal plateau region of the corresponding force–length relationship, hence always working optimally. We hypothesize that this phenomenon is due to the coupling of series elastic compliance and length dependent calcium sensitivity in the VL.  相似文献   

2.
The purpose of this study was to investigate neuromuscular activation of the vastus intermedius (VI) muscle during fatiguing contraction. Seven healthy men performed sustained isometric knee extension exercise at 50% of maximal voluntary contraction until exhaustion. During the fatiguing task, surface electromyograms (EMGs) were recorded from four muscle components of the quadriceps femoris muscle group: VI; vastus lateralis (VL); vastus medialis (VM); and rectus femoris (RF) muscles. For the VI muscle, our recently developed technique was used. Root mean square (RMS) and median frequency (MF) of the surface EMG signal were calculated and these variables were then normalized by the value at the beginning of the task. Normalized RMS of the VI muscle resembled those of the other three muscles at all given times. At 95% of exhaustion time, normalized MF of the VI muscle was significantly higher than that of the VL muscle (p < 0.05). These results suggested that neuromuscular activation is not consistent between the VI and VL muscles at the exhaustion for isometric submaximal contraction and this could reflect the dissimilar intramuscular metabolism between these muscles.  相似文献   

3.
The purposes of this study were to attempt to record surface electromyography (EMG) from the superficial region of vastus intermedius (VI) and to investigate the influence of adjacent muscle activity on surface EMG of VI. First, serial axial magnetic resonance imaging of the thigh was performed for 45 healthy young men to determine morphological characteristics of the VI. Second, surface EMG activity of the VI and other quadriceps femoris (QF) muscle group components were recorded in maximum voluntary contraction during isometric knee extension from 11 healthy young men. To test cross-talk of EMG signals between VI and the nearest adjacent muscle, vastus lateralis (VL), we applied cooling for 20-min on VL to selectively alter activity. Cooling the skin above a muscle is known to decrease median frequency (MF) of EMG signal of the muscle. All subjects displayed a superficial region in VI sufficiently large (14 cm2) to record surface EMG. Surface EMG of VI could be detected in the same scale as other QF muscle group components. Cooling induced a significant MF decrease only in VL (from 92.5 to 44.2 Hz, p < 0.001), but no significant change was observed in VI (from 63.8 to 61.7 Hz). From this result, we concluded the muscle activity of VL is negligible on surface EMG detected from VI during isometric contraction.  相似文献   

4.
This study aimed to determine the characteristics of the in vivo behaviour of human muscle architecture during a pre-motion silent period (PMSP) using ultrasonography. Subjects were requested to perform rapid knee extension with vertical jumping. Electromyographic signals were recorded from the vastus lateralis (VL), vastus medialis, and biceps femoris muscles. Ultrasonic images were recorded from the VL. We found that the cross point between the fascicle and deep aponeurosis in the VL moved to the distal side before the rapid vertical jumps with PMSP. This cross point movement with PMSP was of low amplitude (mean: 1.0 ± 0.3 mm) and velocity (22.2 ± 6.1 mm/s). The amplitude and velocity of the cross point movement were significantly positively related to the angular peak velocity of knee extensor during rapid vertical jumping in trials with PMSP. These results suggest that although low levels of pre-movement muscle architectural change with PMSP may be the result of muscle relaxation behaviour rather than the result of muscle stretching behaviour, this pre-movement effect can influence subsequent muscular performance during a rapid voluntary movement. PMSP may allow pre-movement muscle architectural change to generate a better muscular condition to increase neural activation during the subsequent rapid voluntary contraction.  相似文献   

5.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

6.
PurposeThis study attempted to assess if the resisted contraction of medial rotators of the tibia increases the ratio between the activity of vastus medialis (VM) and vastus lateralis (VL) during maximal isometric contractions (MIC) of the quadriceps femoral (QF) muscle at 90° of knee flexion.MethodsAbout 24 female subjects participated in this study, performing four series MIC of the QF. In the first series subjects performed only MIC of the QF muscle, whereas in the other three there was MIC of the QF with resisted contraction of medial rotators of the tibia, with the tibia positioned in medial, neutral and lateral rotation. During each contraction, VM and VL electromyographic signal (EMGs) and QF force were collected, being the EMGs root mean square (RMS) used to access the activity level of these muscles.ResultsThe use of the General Linear Model (GLM) test showed that for α = 0.05 there was a significant increase in the VM:VL ratio when the resisted contraction of medial rotators of the tibia was performed with the tibia in medial (p = <0.0001), neutral (p = <0.0001) and lateral rotation (p = 0.001). The same test showed that during MIC of the QF associated to resisted contraction of medial rotators of the tibia there were no significant differences in the VM:VL ratio between the three tibial rotation positions adopted (p = 0.866 [medial–neutral]; p = 0.106 [medial–lateral]; p = 0.068 [neutral–lateral]).ConclusionsThe resisted contraction of medial rotators of the tibia increases the VM:VL ratio during MIC of the QF and the tibial rotation position does not influence the VM:VL ratio during MIC associated to resisted contraction of medial rotators of the tibia.  相似文献   

7.
The aims of this study were to examine group differences in muscle activation onset of the vastus medialis (VM) in relation to the vastus lateralis (VL) and pain level during stair ascent in females with patellofemoral pain (PFP) who maintain high and moderate levels of physical activity; to determine the association between physical activity level and muscle activation onset. Forty-three females with PFP and thirty-eight pain-free females were recruited and divided into four groups based on their level of physical activity: females with PFP (n = 26) and pain-free females (n = 26) who practiced a moderate level of physical activity and females with PFP (n = 17) and pain-free females (n = 12) who practiced an intense amount of physical activity. Participants were asked to ascend a seven-step staircase and the VM and VL activation onset was determined. Females with PFP who practiced high level of physical activity demonstrated delayed onset of VM (4.06 ms) compared to healthy females (−14.4 ms). Conversely, females with PFP who practiced moderate level of physical activity did not present VM delay (−2.48 ms) in comparison to healthy females (−9.89 ms). Furthermore, physical activity significantly correlated to the muscle activation onset difference (p = 0.005; R = 0.60). These findings may explain why controversial results regarding VM and VL muscle activation onset have been found.  相似文献   

8.
Patellofemoral pain syndrome (PFPS) is one of the most common, yet misunderstood, knee pathologies. PFPS is thought to result from abnormal patella tracking caused from altered neuromuscular control. Researchers have investigated neuromuscular influences from the gluteus medius (GM), vastus medialis (VM), and vastus lateralis (VL) but with inconsistent findings. A reason for these discrepancies may be from varying methodology. The purpose of this study was to determine the reliability of electromyographic (EMG) methods used to assess amplitudes and timing differences of the GM, VM, and VL in subjects with PFPS. Seven females with PFPS participated. GM, VM, and VL activity was assessed during the stance phase of a stair descent task on two separate occasions. Amplitudes during the different intervals of stance were recorded and expressed as a percent of each muscle’s maximum voluntary isometric contraction. Muscle onsets at the beginning of stair descent were also determined. VM–GM, VL–GM, and VL–VM onset timing differences were quantified. Intraclass correlation coefficients (ICCs) and standard errors of measurement (SEMs) were calculated to assess between-day reliability. Most EMG measures had acceptable reliability (ICC3,5 ? 0.70). Although some measures had moderate reliability (ICC < 0.70), they had low SEMs, which suggested high measurement precision. These findings support using these methods for examining neuromuscular activity in subjects with PFPS.  相似文献   

9.
Muscle fascicle lengths of vastus lateralis (VL) muscle were measured in five healthy men during slow pedaling to investigate the interaction between muscle fibers and tendon. Subjects cycled at a pedaling rate of 40 rpm (98 W). During exercise, fascicle lengths changed from 91 +/- 7 (SE) to 127 +/- 5 mm. It was suggested that fascicles were on the descending limb of their force-length relationship. The average shortening velocity of fascicle was greater than that of muscle-tendon complex in the first half of the knee extension phase and was less in the second half. The maximum shortening velocity of fascicle in the knee extension phase was less than that of muscle-tendon complex by 22 +/- 9%. These discrepancies in velocities were mainly caused by the elongation of the tendinous tissue. It was suggested that the elasticity of VL tendinous tissue enabled VL fascicles to develop force at closer length to their optimal length and kept the maximum shortening velocity of VL fascicles low during slow pedaling.  相似文献   

10.
The present study investigated the effects of submaximal sustained and maximal repetitive contractions on the compliance of human vastus lateralis (VL) tendon and aponeurosis in vivo using two different fatiguing protocols. Twelve male subjects performed three maximum voluntary isometric contractions (MVC) of the knee extensors before and after two fatiguing protocols on a dynamometer. The first fatiguing protocol consisted of a long-lasting sustained isometric knee extension contraction at 25% MVC until failure (inability to hold the defined load). The second fatiguing protocol included long-lasting isokinetic (90°/s) knee extension contractions, where maximum moment was exerted and failure was proclaimed when this value fell below 70% of unfatigued maximum isokinetic moment. Ultrasonography was used to determine the elongation and strain of the VL tendon and aponeurosis. Muscle fatigue was indicated by a significant decrease in maximum resultant knee extension moment (p < 0.05) observed during the MVCs after both long-lasting contractions. No significant (p > 0.05) differences in elongation and strain of the VL tendon and aponeurosis were found, when compared every 300 N (tendon force) before and after the fatiguing protocols. The present data indicate, that the VL tendon and aponeurosis in vivo do not suffer from changes in the compliance neither after long-lasting static mechanical loading (strain ~3.2%) nor after long-lasting cyclic mechanical loading (strain 6.2–5.5%).  相似文献   

11.
Although the possibility that the vastus intermedius (VI) muscle contributes to flexion of the knee joint has been suggested previously, the detail of its functional role in knee flexion is not well understood. The purpose of this study was to examine the antagonist coactivation of VI during isometric knee flexion. Thirteen men performed 25–100% of maximal voluntary contraction (MVC) at 90°, 120°, and 150° knee joint angles. Surface electromyography (EMG) of the four individual muscles in the quadriceps femoris (QF) was recorded and normalized by the EMG signals during isometric knee extension at MVC. Cross-talk on VI EMG signal was assessed based on the median frequency response to selective cooling of hamstring muscles. Normalized EMG of the VI was significantly higher than that of the other synergistic QF muscles at each knee joint angle (all P < 0.05) with minimum cross-talk from the hamstrings to VI. There were significant correlations between the EMG signal of the hamstrings and VI (r = 0.55–0.85, P < 0.001). These results suggest that VI acts as a primary antagonistic muscle of QF during knee flexion, and that VI is presumably a main contributor to knee joint stabilization.  相似文献   

12.
Studies have demonstrated that the electromyographic (EMG) amplitude versus submaximal isometric force relationship is relatively linear. The purpose of this investigation was to determine the minimum number of contractions required to study this relationship. Eighteen men (mean age = 23 years) performed isometric contractions of the leg extensors at 10–90% of the maximum voluntary contraction (MVC) in 10% increments while surface EMG signals were detected from the vastus lateralis and vastus medialis. Linear regression was used to determine the coefficient of determination, slope coefficient, and y-intercept for each muscle and force combination with successively higher levels included in the model (i.e., 10–30%,  10–90% MVC). For the slope coefficients, there was a main effect for force combination (P < .001). The pairwise comparisons showed there was no difference from 10–60% through 10–90% MVC. For the y-intercepts, there were main effects for both muscle (vastus lateralis [4.3 μV RMS] > vastus medialis [−3.7 μV RMS]; P = .034) and force combination (P < .001), with similar values shown from 10–50% through 10–90% MVC. The linearity of the absolute EMG amplitude versus isometric force relationship for the vastus lateralis and vastus medialis suggests that investigators may exclude high force contractions from their testing protocol.  相似文献   

13.
Static, B-mode ultrasound is the most common method of measuring fascicle length in vivo. However, most forearm muscles have fascicles that are longer than the field-of-view of traditional ultrasound (T-US). As such, little work has been done to quantify in vivo forearm muscle architecture. The extended field-of-view ultrasound (EFOV-US) method, which fits together a sequence of B-mode images taken from a continuous ultrasound scan, facilitates direct measurements of longer, curved fascicles. Here, we test the validity and reliability of the EFOV-US method for obtaining fascicle lengths in the extensor carpi ulnaris (ECU). Fascicle lengths from images of the ECU captured in vivo with EFOV-US were compared to lengths from a well-established method, T-US. Images were collected in a joint posture that shortens the ECU such that entire fascicle lengths were captured within a single T-US image. Resulting measurements were not significantly different (p = 0.18); a Bland-Altman test demonstrated their agreement. A novice sonographer implemented EFOV-US in a phantom and in vivo on the ECU. The novice sonographer’s measurements from the ultrasound phantom indicate that the combined imaging and analysis method is valid (average error = 2.2 ± 1.3 mm) and the in vivo fascicle length measurements demonstrate excellent reliability (ICC = 0.97). To our knowledge, this is the first study to quantify in vivo fascicle lengths of the ECU using any method. The ability to define a muscle’s architecture in vivo using EFOV-US could lead to improvements in diagnosis, model development, surgery guidance, and rehabilitation techniques.  相似文献   

14.
Afferent inputs from Ia fibers in muscle spindles are essential for the control of force and prolonged vibration has been applied to muscle-tendon units to manipulate the synaptic input from Ia afferents onto α-motor neurons. The vastus intermedius (VI) reportedly provides the highest contribution to the low-level knee extension torque among the individual synergists of quadriceps femoris (QF). The purpose of the present study was to examine the effect of prolonged vibration to the VI on force steadiness of the QF. Nine healthy men (25.1 ± 4.3 years) performed submaximal force-matching task of isometric knee extension for 15 s before and after mechanical vibration to the superficial region of VI for 30 min. Target forces were 2.5%, 10%, and 30% of maximal voluntary contraction (MVC), and force steadiness was determined by the coefficient of variation (CV) of force. After the prolonged VI vibration, the CV of force at 2.5%MVC was significantly increased, but CVs at 10% and 30%MVCs were not significantly changed. The present study concluded that application of prolonged vibration to the VI increased force fluctuations of the QF during a very low-level force-matching task.  相似文献   

15.
The purpose of this study was to investigate the relationship between sprint performance and architectural characteristics of leg muscles in 26 female 100-m sprinters. Pennation angle and muscle thickness of the vastus lateralis (VL) and gastrocnemius medialis (GM) and lateralis (GL) muscles were measured by B-mode ultrasonography, and fascicle length was estimated. Sprinters had a significantly lower VL pennation angle, but GM and GL pennation angle was similar between sprinters and female control subjects (N = 22). There was no significant correlation between pennation angle and 100-m personal best performance. Sprinters had significantly greater absolute fascicle length in VL and GL than controls, which significantly correlated to 100-m best-record (r = -0.51 and r = -0.44, respectively). Relative fascicle length (VL and GL) were also significantly greater in sprinters than controls. However, there were no significant correlation between relative fascicle length and 100-m best-record (r = -0.36 and r = -0.29, respectively). No relationship was found between the sprint performance and fat-free mass (r = -0.26) or body mass index (r = -0.03). However, there was a significant correlation between percent (%) body fat and 100-m best-record (r = 0.62, p < 0.01). Adjusting the confounding effect of % fat, significant correlations were seen between relative fascicle length and 100-m best-record (VL; r = -0.39 and GL; r = -0.40). Absolute and relative fascicle length were similar in elite female sprinters compared with previous reported values for elite male sprinters (Kumagai et al., 2000). It was concluded that longer fascicle length is associated with greater sprinting performance in sprinters, but there is no gender differences in fascicle length for elite sprinters.  相似文献   

16.
To determine the shortening velocities of fascicles of the vastus lateralis muscle (VL) during isokinetic knee extension, six male subjects were requested to extend the knee with maximal effort at angular velocities of 30 and 150 degrees /s. By using an ultrasonic apparatus, longitudinal images of the VL were produced every 30 ms during knee extension, and the fascicle length and angle of pennation were obtained from these images. The shortening fascicle length with extension of the knee (from 98 to 13 degrees of knee angle; full extension = 0 degrees ) was greater (43 mm) at 30 degrees /s than at 150 degrees /s (35 mm). Even when the angular velocity remained constant during the isokinetic range of motion, the fascicle velocity was found to change from 39 to 77 mm/s at 150 degrees /s and from 6 to 19 mm/s at 30 degrees /s. The force exerted by a fascicle changed with the length of the fascicle at changing angular velocities. The peak values of fascicle force and velocity were observed at approximately 90 mm of fascicle length. In conclusion, even if the angular velocity of knee extension is kept constant, the shortening velocity of a fascicle is dependent on the force applied to the muscle-tendon complex, and the phenomenon is considered to be caused mainly by the elongation of the elastic element (tendinous tissue).  相似文献   

17.
The present study examined the reliability and validity of in vivo vastus lateralis (VL) fascicle length (L(f)) assessment by extended field-of-view ultrasonography (EFOV US). Intraexperimenter and intersession reliability of EFOV US were tested. Further, L(f) measured from EFOV US images were compared to L(f) measured from static US images (6-cm FOV) where out-of-field fascicle portions were trigonometrically estimated (linear extrapolation). Finally, spatial accuracy of the EFOV technique was assessed by comparing L(f) measured on swine VL by EFOV US to actual measurements from digital photographs. The difference between repeated VL L(f) measurements by the same experimenter was 2.1 ± 1.7% with an intraclass correlation (ICC) of 0.99 [95% confidence interval (CI) = 0.95-1.00]. In terms of intersession reliability, no difference (P = 0.48) was observed between L(f) measured on two different occasions, with ICC = 0.95 (CI = 0.80-0.99). The average absolute difference between L(f) measured by EFOV US and using linear extrapolation was 12.6 ± 8.1% [ICC = 0.76 (CI = -0.20-0.94)]; EFOV L(f) was always longer than extrapolated L(f). The relative error of measurement between L(f) measured by EFOV US and by dissective assessment (digital photographs) in isolated swine VL was 0.84% ± 2.6% with an ICC of 0.99 (CI = 0.94-1.00). These results show that EFOV US is a reliable and valid method for the measurement of long muscle fascicle in vivo. Thus EFOV US analysis was proven more accurate for the assessment of skeletal muscle fascicle length than conventional extrapolation methods.  相似文献   

18.
Cardiopulmonary and skeletal muscle effects of combined aerobic and resistance training vs. aerobic training were studied in men with coronary heart disease. Sixteen men with coronary heart disease underwent a cardiopulmonary exercise testing and a quadriceps skeletal muscle fatigue assessment. Patients were divided into two groups and trained in a combined aerobic and resistance or aerobic training group during 7 weeks. Maximal voluntary contraction and isometric endurance time were measured with electromyographic signals recorded from vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM) during isometric endurance time. Exercise tolerance increased only in the combined group (p < 0.05). Maximal voluntary contraction and isometric endurance time did not change after training in either group but was performed at 5.8% higher force output for the combined group. After training, median frequency values were higher for the VL and VM (p < 0.001) in the aerobic group and also higher for the VL, RF (p < 0.001) and VM (p < 0.05) in the combined group. Combined aerobic and resistance training was more effective to improve exercise tolerance, decrease skeletal muscle fatigue and correct neuromuscular alterations in men with coronary heart disease.  相似文献   

19.
This study examined correlations between type I percent myosin heavy chain isoform content (%MHC) and mechanomyographic amplitude (MMGRMS) during isometric muscle actions. Fifteen (age = 21.63 ± 2.39) participants performed 40% and 70% maximal voluntary contractions (MVC) of the leg extensors that included increasing, steady force, and decreasing segments. Muscle biopsies were collected and MMG was recorded from the vastus lateralis. Linear regressions were fit to the natural-log transformed MMGRMS–force relationships (increasing and decreasing segments) and MMGRMS was selected at the targeted force level during the steady force segment. Correlations were calculated among type I%MHC and the b (slopes) terms from the MMGRMS–force relationships and MMGRMS at the targeted force. For the 40% MVC, correlations were significant (P < 0.02) between type I%MHC and the b terms from the increasing (r = −0.804) and decreasing (r = −0.568) segments, and MMGRMS from the steady force segment (r = −0.606). Type I%MHC was only correlated with MMGRMS during the steady force segment (P = 0.044, r = −0.525) during the 70% MVC. Higher type I%MHC reduced acceleration in MMGRMS (b terms) during the 40% MVC and the amplitude during the steady force segments. The surface MMG signal recorded during a moderate intensity contraction provided insight on the contractile properties of the VL in vivo.  相似文献   

20.
This study’s aim was to determine the between days reliability of surface EMG recordings from the superficial quadriceps during a multi joint sub-maximal fatiguing protocol. Three subject groups (healthy n = 29; patellofemoral pain syndrome n = 74; knee osteoarthritis n = 55) performed the task at 60 maximum voluntary isometric contraction on three separate days. Spectral and amplitude EMG parameters were recorded from vastus medialis oblique, vastus lateralis and rectus femoris and were analysed for between days reliability using intraclass correlation coefficient (ICC(2,1)), the standard errors of measure and smallest detectable differences. For frequency results, initial and final frequency values had ‘good’ or ‘excellent’ reliability in all groups for all muscles. ICCs for median frequency slopes for vastus medialis oblique, vastus lateralis, and rectus femoris respectively, in the osteoarthritis group were 0.04, 0.55, and 0.72; in the patellofemoral pain group were 0.41, 0.17, and 0.33; in the healthy group were 0.68, 0.64, and 0.31. The standard errors of measurement and smallest detectable differences for all groups and for all muscles were unacceptably high. For amplitude results, ICC root mean squared initial and final values were ‘good’ to ‘excellent’ for all groups and all muscles, albeit with high measurement error. The ICCs for root mean squared slopes in all tests were ‘poor’ with extremely high measurement error. The poor between days reliability and high measurement error suggests that surface EMG should not be adopted to assess fatigue during multi joint sub-maximal isometric quadriceps testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号