首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this research was to investigate the contributions of individual muscles to joint rotational stiffness and total joint rotational stiffness about the lumbar spine’s L4–5 joint prior to, and following, sudden dynamic lateral perturbations to the trunk. Kinematic and surface EMG data were collected while subjects maintained a kneeling posture on a robotic platform, while restrained so that motions caused by the perturbation were transferred to the pelvis, causing motion of the trunk and head. The robotic platform caused sudden inertial trunk lateral perturbations to the right or left, with or without timing and direction knowledge. An EMG-driven model of the lumbar spine was used to calculate the muscle forces and contributions to joint rotational stiffness during the perturbations. Data showed 95% and 106% increases in total joint rotational stiffness, about the lateral bend and axial twist axes, when subjects had knowledge of the timing of the perturbation. Also, the contralateral muscles exhibited a significantly larger total joint rotational stiffness about the lateral bend axis, and earlier surface EMG responses, than the ipsilateral muscles. The results indicate that, when the timing of the perturbation was unknown, subjects relied more on delayed muscle forces following the perturbation to stiffen the L4–5 joint.  相似文献   

2.
A method for quantifying postural control of the lumbar spine during unstable sitting was developed. The unstable seat apparatus was equipped with leg and foot supports to isolate the control of the lumbar spine and trunk from the adjustments in the lower body joints. Polyester resin hemispheres with decreasing diameters were attached to the bottom of the seat to achieve increasing levels of task difficulty. The seat was placed on a force plate at the edge of a table and the participating subjects were instructed to maintain their balance while sitting on the seat. Coordinates of center of pressure (CoP) were recorded and quantified with summary statistics and random walk analysis. The CoP movement increased significantly with increased seat instability (task difficulty) (p<0.01). Stabilogram plots of the CoP movement revealed short and long-term regions consistent with the hypothesis that the two regions reflect open and closed-loop postural control mechanisms. Repeatability of the CoP parameters was excellent for the summary statistics and the short-term random walk coefficients (0.77<R<0.96). It was fair for the long-term diffusion coefficients (0.56<R<0.57) and poor for the long-term scaling exponents (0.14<R<0.40). Summary statistics of the CoP movement were positively correlated with body weight (0.69<R<0.73) and the T9 to L4/L5 distance (0.43<R<0.54) of the subjects. This method can be applied to study the deficits in postural control of the lumbar spine in low-back pain population.  相似文献   

3.
    
Coactivation is an important component for understanding the physiological cost of muscular and spinal loads and their associations with spinal pathology and potentially myofascial pain. However, due to the complex and dynamic nature of most activities of daily living, it can be difficult to capture a quantifiable measure of coactivation. Many methods exist to assess coactivation, but most are limited to two-muscle systems, isometric/complex analyses, or dynamic/uniplanar analyses. Hence, a void exists in that coactivation has not been documented or assessed as a multiple-muscle system under realistic complex dynamic loading. Overall, no coactivation index has been capable of assessing coactivation during complex dynamic exertions. The aim of this review is to provide an understanding of the factors that may influence coactivation, document the metrics used to assess coactivity, assess the feasibility of those metrics, and define the necessary variables for a coactivation index that can be used for a variety of tasks. It may also be clinically and practically relevant in the understanding of rehabilitation effectiveness, efficiency during task performance, human-task interactions, and possibly the etiology for a multitude of musculoskeletal conditions.  相似文献   

4.
The purpose of this study was to examine the muscular activities and kinetics of the trunk during unstable sitting in healthy and LBP subjects. Thirty-one healthy subjects and twenty-three LBP subjects were recruited. They were sat on a custom-made chair mounted on a force plate. Each subject was asked to regain balance after the chair was tilted backward at 20°, and then released. The motions of the trunk and trunk muscle activity were examined. The internal muscle moment and power at the hip and lumbar spine joints were calculated using the force plate and motion data. No significant differences were found in muscle moment and power between healthy and LBP subjects (p > 0.05). The duration of contraction of various trunk muscles and co-contraction were significantly longer in the LBP subjects (p < 0.05) when compared to healthy subjects, and the reaction times of the muscles were also significantly reduced in LBP subjects (p < 0.05). LBP subjects altered their muscle strategies to maintain balance during unstable sitting, but these active mechanisms appear to be effective as trunk balance was not compromised and the internal moment pattern remained similar. The changes in muscle strategies may be the causes of LBP or the result of LBP with an attempt to protect the spine.  相似文献   

5.
    
There is currently no validated full-body lifting model publicly available on the OpenSim modelling platform to estimate spinal loads during lifting. In this study, the existing full-body-lumbar-spine model was adapted and validated for lifting motions to produce the lifting full-body model. Back muscle activations predicted by the model closely matched the measured erector spinae activation patterns. Model estimates of intradiscal pressures and in vivo measurements were strongly correlated. The same spine loading trends were observed for model estimates and reported vertebral body implant measurements. These results demonstrate the suitability of this model to evaluate changes in lumbar loading during lifting.  相似文献   

6.
Epidemiological evidence indicates that sudden loading of the torso is a risk factor for low back injury. Accurately quantifying the time-varying loading of the spine during sudden loading events and how these loading profiles are affected by workplace factors such as fatigue, expectation, and training can potentially lead to intervention strategies that can reduce these risks. Electromyographic and trunk motion data were collected from six male participants who performed a series of sudden loading trials with varying levels of expectation (no preview, 300-ms audible preview), fatigue (no fatiguing exertion preceding sudden load, short duration/high intensity fatiguing exertion preceding sudden load), and training (untrained, trained). These data were used as inputs to an adaptive system identification model wherein time-varying lower back stiffness, torque, work, and impulse magnitudes were calculated. Results indicated that expectation significantly increased peak and average stiffness by 70% and 113%, respectively, and significantly decreased peak torque, work, and impulse magnitudes by 36%, 50%, and 45%, respectively. Training significantly decreased peak torque and work by 25% and 34%, respectively. The results also showed a significant interaction between expectation and training wherein training had a positive effect during the trials with preview but no effect during the trials with no preview (increased peak stiffness by 17% and decreased impulse magnitude by 43%).  相似文献   

7.
    
There is a clear relationship between lumbar spine loading and back musculoskeletal disorders in manual materials handling. The incidence of back disorders is greater in women than men, and for similar work demands females are functioning closer to their physiological limit. It is crucial to study loading on the spine musculoskeletal system with actual handlers, including females, to better understand the risk of back disorders. Extrapolation from biomechanical studies conducted on unexperienced subjects (mainly males) might not be applicable to actual female workers. For male workers, expertise changes the lumbar spine flexion, passive spine resistance, and active/passive muscle forces. However, experienced females select similar postures to those of novices when spine loading is critical. This study proposes that the techniques adopted by male experts, male novices, and females (with considerable experience but not categorized as experts) impact their lumbar spine musculoskeletal systems differently. Spinal loads, muscle forces, and passive resistance (muscle and ligamentous spine) were predicted by a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine. Expert males flexed their lumbar spine less (avg. 21.9° vs 30.3–31.7°) and showed decreased passive internal moments (muscle avg. 8.9% vs 15.9–16.0%; spine avg. 4.7% vs 7.1–7.8%) and increased active internal moments (avg. 72.9% vs 62.0–63.9%), thus producing a different impact on their lumbar spine musculoskeletal systems. Experienced females sustained the highest relative spine loads (compression avg. 7.3 N/BW vs 6.2–6.4 N/BW; shear avg. 2.3 N/BW vs 1.7–1.8 N/BW) in addition to passive muscle and ligamentous spine resistance similar to novices. Combined with smaller body size, less strength, and the sequential lifting technique used by females, this could potentially mean greater risk of back injury. Workers should be trained early to limit excessive and repetitive stretching of their lumbar spine passive tissues.  相似文献   

8.
    
Translational vertebral motion during functional tasks manifests itself in dynamic loci for center of rotation (COR). A shift of COR affects moment arms of muscles and ligaments; consequently, muscle and joint forces are altered. Based on posture- and level-specific trends of COR migration revealed by in vivo dynamic radiography during functional activities, it was postulated that the instantaneous COR location for a particular joint is optimized in order to minimize the joint reaction forces. A musculoskeletal multi-body model was employed to investigate the hypotheses that (1) a posterior COR in upright standing and (2) an anterior COR in forward flexed posture leads to optimized lumbar joint loads. Moreover, it was hypothesized that (3) lower lumbar levels benefit from a more superiorly located COR.The COR in the model was varied from its initial position in posterior-anterior and inferior-superior direction up to ±6 mm in steps of 2 mm. Movement from upright standing to 45° forward bending and backwards was simulated for all configurations. Joint reaction forces were computed at levels L2L3 to L5S1. Results clearly confirmed hypotheses (1) and (2) and provided evidence for the validity of hypothesis (3), hence offering a biomechanical rationale behind the migration paths of CORs observed during functional flexion/extension movement. Average sensitivity of joint force magnitudes to an anterior shift of COR was +6 N/mm in upright and −21 N/mm in 30° forward flexed posture, while sensitivity to a superior shift in upright standing was +7 N/mm and −8 N/mm in 30° flexion. The relation between COR loci and joint loading in upright and flexed postures could be mainly attributed to altered muscle moment arms and consequences on muscle exertion. These findings are considered relevant for the interpretation of COR migration data, the development of numerical models, and could have an implication on clinical diagnosis and treatment or the development of spinal implants.  相似文献   

9.

Background

Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities.

Methods

Twenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion.

Results

Mean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly (P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion.

Conclusions

Results of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study.  相似文献   

10.
Studies have demonstrated that the electromyographic (EMG) amplitude versus submaximal isometric force relationship is relatively linear. The purpose of this investigation was to determine the minimum number of contractions required to study this relationship. Eighteen men (mean age = 23 years) performed isometric contractions of the leg extensors at 10–90% of the maximum voluntary contraction (MVC) in 10% increments while surface EMG signals were detected from the vastus lateralis and vastus medialis. Linear regression was used to determine the coefficient of determination, slope coefficient, and y-intercept for each muscle and force combination with successively higher levels included in the model (i.e., 10–30%,  10–90% MVC). For the slope coefficients, there was a main effect for force combination (P < .001). The pairwise comparisons showed there was no difference from 10–60% through 10–90% MVC. For the y-intercepts, there were main effects for both muscle (vastus lateralis [4.3 μV RMS] > vastus medialis [−3.7 μV RMS]; P = .034) and force combination (P < .001), with similar values shown from 10–50% through 10–90% MVC. The linearity of the absolute EMG amplitude versus isometric force relationship for the vastus lateralis and vastus medialis suggests that investigators may exclude high force contractions from their testing protocol.  相似文献   

11.
    
Low back disorders are a frequent medical problem. Altered neuromuscular control of the spine has been associated with low back pain, and may contribute to its occurrence. The purpose of this study was to investigate the effect of lumbar extensor fatigue on reflex delay and amplitude in the paraspinal muscles. Ten healthy males (20–22 years of age) were subjected to an anteriorly-directed perturbation applied at the inferior margin of the scapulae while standing quietly before and after a lumbar extensor fatiguing protocol. The fatiguing protocol consisted of multiple sets of back extensions and intermittent isometric maximum voluntary contraction on a Roman chair for 14 min until 60% of unfatigued lumbar extensor MVC was reached. Reflexes were recorded from the paraspinal muscles at the level of L4. Results indicated the mean reflex delay was 60 ± 18 ms and was not affected by fatigue (p = 0.278). Reflex amplitude increased 36 ± 32% with fatigue (p = 0.017). The increase in reflex amplitude may reflect an attempt to compensate for losses in muscle force capacity with fatigue in order to maintain sufficient spinal stability. However, additional studies are necessary to investigate the mechanisms of this fatigue-related change in paraspinal reflex.  相似文献   

12.
    
This study quantified the inter- and intra-test reliability of telemetric surface electromyography (EMG) and near infrared spectroscopy (NIRS) during resistance exercise. Twelve well-trained young men performed high-intensity back squat exercise (12 sets at 70–90% 1-repetition maximum) on two occasions, during which EMG and NIRS continuously monitored muscle activation and oxygenation of the thigh muscles. Intra-test reliability for EMG and NIRS variables was generally higher than inter-test reliability. EMG median frequency variables were generally more reliable than amplitude-based variables. The reliability of EMG measures was not related to the intensity or number of repetitions performed during the set. No notable differences were evident in the reliability of EMG between different agonist muscles. NIRS-derived measures of oxyhaemoglobin, deoxyhaemoglobin and tissue saturation index were generally more reliable during single-repetition sets than multiple-repetition sets at the same intensity. Tissue saturation index was the most reliable NIRS variable. Although the reliability of the EMG and NIRS measures varied across the exercise protocol, the precise causes of this variability are not yet understood. However, it is likely that biological variation during multi-joint isotonic resistance exercise may account for some of the variation in the observed results.  相似文献   

13.
14.
This study was designed to measure the average size of the motor unit functional innervation zone (FINZONE) in healthy and in diseased muscles, intramuscularly, in fatigue-inducing maximal voluntary contractions. The bicipital EMG interference patterns of 188 subjects (32 healthy, 83 neuropathic, 28 myasthenic, 13 myotonic, and 32 myopathic) were recorded with coaxial needle electrodes. From them, the FINZONE size criterion was computed, repeatedly, each 5.84 s to complete fatigue. The data display showed that the FINZONE size diminished with fatigue. Over all groups, this decrement was significant at P = 0.00001. Separately, only the normals and the neuropathic groups reached significance. Measured by the FINZONE size, the five groups divided into two significantly different clusters: (a) the {myopathic/myasthenic} cluster with large FINZONE sizes and (b) the {normal/neuropathic/myotonic} cluster with smaller ones. Several explanations for these findings were entertained. Also, as significant group differences were found, these results may prove helpful, complementing other variables, in the diagnosis of neuromuscular disorders. Both issues (FINZONE diagnostic value and FINZONE size decrement with fatigue) deserve additional study.  相似文献   

15.
Muscle activity reduces soft-tissue resonance at heel-strike during walking   总被引:1,自引:0,他引:1  
Muscle activity has previously been suggested to minimize soft-tissue resonance which occurs at heel-strike during walking and running. If this concept were true then the greatest vibration damping would occur when the input force was closest to the resonant frequency of the soft-tissues at heel-strike. However, this idea has not been tested. The purpose of this study was to test whether muscle activity in the lower extremity is used to damp soft-tissue resonance which occurs at heel-strike during walking. Hard and soft shoe conditions were tested in a randomized block design. Ground reaction forces, soft-tissue accelerations and myoelectric activity were measured during walking for 40 subjects. Soft-tissue mass was estimated from anthropologic measurements, allowing inertial forces in the soft-tissues to be calculated. The force transfer from the ground to the tissues was compared with changes in the muscle activity. The soft condition resulted in relative frequencies (input/tissue) to be closer to resonance for the main soft-tissue groups. However, no increase in force transmission was observed. Therefore, the vibration damping in the tissues must have increased. This increase concurred with increases in the muscle activity for the biceps femoris and lateral gastrocnemius. The evidence supports the proposal that muscle activity damps soft-tissue resonance at heel-strike. Muscles generate forces which act across the joints and, therefore, shoe design may be used to modify muscle activity and thus joint loading during walking and running.  相似文献   

16.
Handgrip force (HF), maximal pinch force (MF), muscle endurance (ME), and the median power frequency (MdPF) of the activity shown in the electromyogram (EMG) were studied at various altitudes in eight normal healthy subjects. MF and ME were measured between the index finger and thumb, and all measurements were obtained at altitudes ranging from 610 to 4860 m during an expedition in the Qinghai Plateau in China. With the change in altitude HF, ME, and MF showed no significant change. Compared to the MdPF at 2260 m on ascent, the MdPF at other altitudes showed a significant decrease (P<0.01). Thus, we conclude that muscle performance (HF, MF, and ME) was not affected by the environment at high altitude. However, MdPF was affected and the mean MdPF at 610 m after the expedition did not recover to initial values of MdPF. We suggest these results may have been affected by fatigue and chronic exposure to the hypobaric hypoxic environment, since the members of the expedition party expressed feelings of sluggishness and fatigue after the expedition.  相似文献   

17.
    
While studies have been conducted using human cadaver lumbar spines to understand injury biomechanics in terms of stability/energy to fracture, and physiological responses under pure-moment/follower loads, data are sparse for inferior-to-superior impacts. Injuries occur under this mode from underbody blasts. Objectives: determine role of age, disc area, and trabecular bone density on tolerances/risk curves under vertical loading from a controlled group of specimens. T12-S1 columns were obtained, pretest X-rays and CTs taken, load cells attached to both ends, impacts applied at S1-end using custom vertical accelerator device, and posttest X-ray, CT, and dissections done. BMD of L2-L4 vertebrae were obtained from QCT. Survival analysis-based Human Injury Probability Curves (HIPCs) were derived using proximal and distal forces. Age, area, and BMD were covariates. Forces were considered uncensored, representing the load carrying capacity. The Akaike Information Criterion was used to determine optimal distributions. The mean forces, ±95% confidence intervals, and Normalized Confidence Interval Size (NCIS) were computed. The Lognormal distribution was the optimal function for both forces. Age, area, and BMD were not significant (p > 0.05) covariates for distal forces, while only BMD was significant for proximal forces. The NCIS was the lowest for force-BMD covariate HIPC. The HIPCs for both genders at 35 and 45 years were based on population BMDs. These HIPCs serve as human tolerance criteria for automotive, military, and other applications. In this controlled group of samples, BMD is a better predictor-covariate that characterizes lumbar column injury under inferior-to-superior impacts.  相似文献   

18.
    
Objectives:To examine changes in muscle thickness (MT), soreness (SOR), and isometric torque (ISO) following exercise with pulsed direct current (Neubie) or traditional high-load (TRAD) exercise.Methods:Thirty-two participants had SOR, MT, and ISO measured before, immediately after, and 24 and 48h following TRAD and Neubie. Rating of perceived exertion (RPE) and discomfort were also measured. Results are displayed as means(SD).Results:For MT, there was a condition x time interaction (p<0.001). For Neubie, MT increased pre [3.7(0.7)cm] to post [3.9(0.8) cm, p<0.001] and remained elevated at 24h. For TRAD, MT increased pre [3.7(0.6)cm] to post [4.0 (0.7)cm, p<0.001] and remained up to 48h. Greater values were observed for TRAD post-exercise. For ISO, both conditions decreased up to 48h. TRAD demonstrated a greater change post exercise (p<0.001). For SOR, both conditions increased up to 48h. Neubie demonstrated greater SOR at 48h (p=0.007). RPE was higher for all sets in TRAD [Mean across sets=16.0(1.9) vs. 13.5(2), p<0.001]. Discomfort was higher in all sets for Neubie [Mean across sets=5.8(1.5)vs. 4.5(2.0), p<0.05].Conclusions:Both conditions showed increased SOR, and decreased ISO for up to 48h, with MT increased for up to 24h. MT remained elevated in TRAD at 48h. Neubie training might be effective for individuals who are looking to experience lower RPE responses during exercise.  相似文献   

19.
    
Determining muscle contractile properties following exercise is critical in understanding neuromuscular function. Following high intensity training, individuals often experience exercise induced muscle damage (EIMD). The purpose of this investigation was to determine the effect of whole-body vibration (WBV) on muscle contractile properties following EIMD. Twenty-seven females volunteered for 7 sessions and were randomly assigned to a treatment or control group. Muscle contractile properties were assessed via voluntary torque (VT), peak twitch torque (TT), time to reach peak torque, half relaxation time of twitch torque, percent activation (%ACT), rate of rise (RR), rate of decline (RD), mean and peak electromyography during maximum voluntary isometric contraction. Two testing sets were collected each day, consisting of pre measures followed by WBV or control and post measures. A mixed factor analysis of variance was conducted for each variable. %ACT measures found baseline being less than day 1 in both measures in the control group. TT was found to be greater in the control group compared to WBV group. TT and VT baseline measures were greater than all other time points. RR showed control group had higher values than WBV group. These results indicate that WBV following EIMD had some positive effects on muscle contractile properties.  相似文献   

20.
Measuring muscle forces in vivo is invasive and consequently indirect methods e.g., electromyography (EMG) are used in estimating muscular force production. The aim of the present paper was to examine what kind of effect the disruption of the physiological signal caused by the innervation zone has in predicting the force/torque output from surface EMG. Twelve men (age 26 (SD ±3) years; height 179 (±6) cm; body mass 73 (±6) kg) volunteered as subjects. They were asked to perform maximal voluntary isometric contraction (MVC) in elbow flexion, and submaximal contractions at 10%, 20%, 30%, 40%, 50% and 75% of the recorded MVC. EMG was measured from biceps brachii muscle with an electrode grid of 5 columns × 13 rows. Force-EMG relationships were determined from individual channels and as the global mean value. The relationship was deemed inconsistent if EMG value did not increase in successive force levels. Root mean squared errors were calculated for 3rd order polynomial fits. All subjects had at least one (4-52) inconsistent channel. Two subjects had inconsistent relationship calculated from the global mean. The mean root mean squared error calculated using leave one out method for the fits of the individual channels (0.33 ± 0.17) was higher (P < 0.001) than the error for the global mean fit (0.16 ± 0.08). It seems that the disruption of the physiological signal caused by the innervation zone affects the consistency of the force-EMG relationship on single bipolar channel level. Multichannel EMG recordings used for predicting force overcame this disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号