首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions.  相似文献   

2.
3.
Although most bacteria contain a single circular chromosome, some have complex genomes, and all Vibrio species studied so far contain both a large and a small chromosome. In recent years, the divided genome of Vibrio cholerae has proven to be an interesting model system with both parallels to and novel features compared with the genome of Escherichia coli. While factors influencing the replication and segregation of both chromosomes have begun to be elucidated, much remains to be learned about the maintenance of this genome and of complex bacterial genomes generally. An important aspect of replicating any genome is the correct timing of initiation, without which organisms risk aneuploidy. During DNA replication in E. coli, newly replicated origins cannot immediately reinitiate because they undergo sequestration by the SeqA protein, which binds hemimethylated origin DNA. This DNA is already methylated by Dam on the template strand and later becomes fully methylated; aberrant amounts of Dam or the deletion of seqA leads to asynchronous replication. In our study, hemimethylated DNA was detected at both origins of V. cholerae, suggesting that these origins are also subject to sequestration. The overproduction of SeqA led to a loss of viability, the condensation of DNA, and a filamentous morphology. Cells with abnormal DNA content arose in the population, and replication was inhibited as determined by a reduced ratio of origin to terminus DNA in SeqA-overexpressing cells. Thus, excessive SeqA negatively affects replication in V. cholerae and prevents correct progression to downstream cell cycle events such as segregation and cell division.  相似文献   

4.
The Ori region of bacterial genomes is segregated early in the replication cycle of bacterial chromosomes. Consequently, Ori region positioning plays a pivotal role in chromosome dynamics. The Ori region of the E. coli chromosome is organized as a macrodomain with specific properties concerning DNA mobility, segregation of loci and long distance DNA interactions. Here, by using strains with chromosome rearrangements and DNA mobility as a read-out, we have identified the MaoP/maoS system responsible for constraining DNA mobility in the Ori region and limiting long distance DNA interactions with other regions of the chromosome. MaoP belongs to a group of proteins conserved in the Enterobacteria that coevolved with Dam methylase including SeqA, MukBEF and MatP that are all involved in the control of chromosome conformation and segregation. Analysis of DNA rings excised from the chromosome demonstrated that the single maoS site is required in cis on the chromosome to exert its effect while MaoP can act both in cis and in trans. The position of markers in the Ori region was affected by inactivating maoP. However, the MaoP/maoS system was not sufficient for positioning the Ori region at the ¼–¾ regions of the cell. We also demonstrate that the replication and the resulting expansion of bulk DNA are localized centrally in the cell. Implications of these results for chromosome positioning and segregation in E. coli are discussed.  相似文献   

5.
The discrete regulation of supercoiling, catenation and knotting by DNA topoisomerases is well documented both in vivo and in vitro, but the interplay between them is still poorly understood. Here we studied DNA catenanes of bacterial plasmids arising as a result of DNA replication in Escherichia coli cells whose topoisomerase IV activity was inhibited. We combined high-resolution two-dimensional agarose gel electrophoresis with numerical simulations in order to better understand the relationship between the negative supercoiling of DNA generated by DNA gyrase and the DNA interlinking resulting from replication of circular DNA molecules. We showed that in those replication intermediates formed in vivo, catenation and negative supercoiling compete with each other. In interlinked molecules with high catenation numbers negative supercoiling is greatly limited. However, when interlinking decreases, as required for the segregation of newly replicated sister duplexes, their negative supercoiling increases. This observation indicates that negative supercoiling plays an active role during progressive decatenation of newly replicated DNA molecules in vivo.  相似文献   

6.
We define chromosomal replication complexity (CRC) as the ratio of the copy number of the most replicated regions to that of unreplicated regions on the same chromosome. Although a typical CRC of eukaryotic or bacterial chromosomes is 2, rapidly growing Escherichia coli cells induce an extra round of replication in their chromosomes (CRC = 4). There are also E. coli mutants with stable CRC∼6. We have investigated the limits and consequences of elevated CRC in E. coli and found three limits: the “natural” CRC limit of ∼8 (cells divide more slowly); the “functional” CRC limit of ∼22 (cells divide extremely slowly); and the “tolerance” CRC limit of ∼64 (cells stop dividing). While the natural limit is likely maintained by the eclipse system spacing replication initiations, the functional limit might reflect the capacity of the chromosome segregation system, rather than dedicated mechanisms, and the tolerance limit may result from titration of limiting replication factors. Whereas recombinational repair is beneficial for cells at the natural and functional CRC limits, we show that it becomes detrimental at the tolerance CRC limit, suggesting recombinational misrepair during the runaway overreplication and giving a rationale for avoidance of the latter.  相似文献   

7.
Apicomplexans, including the pathogens Plasmodium and Toxoplasma, carry a nonphotosynthetic plastid of secondary endosymbiotic origin called the apicoplast. The P. falciparum apicoplast contains a 35 kb, circular DNA genome with limited coding capacity that lacks genes encoding proteins for DNA organization and replication. We report identification of a nuclear-encoded bacterial histone-like protein (PfHU) involved in DNA compaction in the apicoplast. PfHU is associated with apicoplast DNA and is expressed throughout the parasite's intra-erythocytic cycle. The protein binds DNA in a sequence nonspecific manner with a minimum binding site length of ~27 bp and a Kd of ~63 nM and displays a preference for supercoiled DNA. PfHU is capable of condensing Escherichia coli nucleoids in vivo indicating its role in DNA compaction. The unique 42 aa C-terminal extension of PfHU influences its DNA condensation properties. In contrast to bacterial HUs that bend DNA, PfHU promotes concatenation of linear DNA and inhibits DNA circularization. Atomic Force Microscopic study of PfHU–DNA complexes shows protein concentration-dependent DNA stiffening, intermolecular bundling and formation of DNA bridges followed by assembly of condensed DNA networks. Our results provide the first functional characterization of an apicomplexan HU protein and provide additional evidence for red algal ancestry of the apicoplast.  相似文献   

8.

Background

In low-copy-number plasmids, the partitioning loci (par) act to ensure proper plasmid segregation and copy number maintenance in the daughter cells. In many bacterial species, par gene homologues are encoded on the chromosome, but their function is much less understood. In the two-replicon, polyploid genome of the hyperthermophilic bacterium Thermus thermophilus, both the chromosome and the megaplasmid encode par gene homologues (parABc and parABm, respectively). The mode of partitioning of the two replicons and the role of the two Par systems in the replication, segregation and maintenance of the genome copies are completely unknown in this organism.

Results

We generated a series of chromosomal and megaplasmid par mutants and sGFP reporter strains and analyzed them with respect to DNA segregation defects, genome copy number and replication origin localization. We show that the two ParB proteins specifically bind their cognate centromere-like sequences parS, and that both ParB-parS complexes localize at the cell poles. Deletion of the chromosomal parAB genes did not apparently affect the cell growth, the frequency of cells with aberrant nucleoids, or the chromosome and megaplasmid replication. In contrast, deletion of the megaplasmid parAB operon or of the parB gene was not possible, indicating essentiality of the megaplasmid-encoded Par system. A mutant expressing lower amounts of ParABm showed growth defects, a high frequency of cells with irregular nucleoids and a loss of a large portion of the megaplasmid. The truncated megaplasmid could not be partitioned appropriately, as interlinked megaplasmid molecules (catenenes) could be detected, and the ParBm-parSm complexes in this mutant lost their polar localization.

Conclusions

We show that in T. thermophilus the chromosomal par locus is not required for either the chromosomal or megaplasmid bulk DNA replication and segregation. In contrast, the megaplasmid Par system of T. thermophilus is needed for the proper replication and segregation of the megaplasmid, and is essential for its maintenance. The two Par sets in T. thermophilus appear to function in a replicon-specific manner. To our knowledge, this is the first analysis of Par systems in a polyploid bacterium.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1523-3) contains supplementary material, which is available to authorized users.  相似文献   

9.
FtsK is essential for Escherichia coli cell division. We report that cells lacking the C terminus of FtsK are defective in chromosome segregation as well as septation, often exhibiting asymmetrically positioned nucleoids and large anucleate regions. Combining the corresponding truncated ftsK gene with a mukB null mutation resulted in a synthetic lethal phenotype. When the truncated ftsK was combined with a minCDE deletion, chains of minicells were generated, many of which contained DNA. These results suggest that the C terminus of FtsK has an important role in chromosome partitioning.  相似文献   

10.
Studies of time-dependent drug and environmental effects on single, live bacterial cells would benefit significantly from a permeable, nonperturbative, long-lived fluorescent stain specific to the nucleoids (chromosomal DNA). The ideal stain would not affect cell growth rate or nucleoid morphology and dynamics, even during laser illumination for hundreds of camera frames. In this study, time-dependent, single-cell fluorescence imaging with laser excitation and a sensitive electron-multiplying charge-coupled-device (EMCCD) camera critically tested the utility of “dead-cell stains” (SYTOX orange and SYTOX green) and “live-cell stains” (DRAQ5 and SYTO 61) and also 4′,6-diamidino-2-phenylindole (DAPI). Surprisingly, the dead-cell stains were nearly ideal for imaging live Escherichia coli, while the live-cell stains and DAPI caused nucleoid expansion and, in some cases, cell permeabilization and the halting of growth. SYTOX orange performed well for both the Gram-negative E. coli and the Gram-positive Bacillus subtilis. In an initial application, we used two-color fluorescence imaging to show that the antimicrobial peptide cecropin A destroyed nucleoid-ribosome segregation over 20 min after permeabilization of the E. coli cytoplasmic membrane, reminiscent of the long-term effects of the drug rifampin. In contrast, the human cathelicidin LL-37, while similar to cecropin A in structure, length, charge, and the ability to permeabilize bacterial membranes, had no observable effect on nucleoid-ribosome segregation. Possible underlying causes are suggested.  相似文献   

11.
Unequal crossing-over between sister chromosomes in the process of DNA replication in Escherichia coli leads to the formation of tandem duplications, thus enhancing the activity of certain genes. In conjugational matings between genetically marked E. coli strains, unequal crossing-over leads to the formation of heterozygous tandem duplications. Studying these duplications as model systems allowed the conclusion that unequal crossing-over between direct DNA repeats of sister chromosomes is the main pathway of the formation of selected recombinants in E. coli strains carrying duplications. This was inferred from the data on the segregation of homozygous diploid recombinants by heterozygous duplications. Unequal crossing-over between sister chromosomes occurs as adaptive exchange providing the survival of the greater part of bacterial cells on a selective medium. The known phenomenon of adaptive mutagenesis may also be a consequence of unequal exchanges at the level of DNA mononucleotide repeats.  相似文献   

12.
When germinating spores of the temperature-sensitive DNA initiation mutant of Bacillus subtilis TsB134 are shifted to the restrictive temperature at a time such that just one or two rounds of replication are accomplished, the completed, nonreplicating nucleoids that form eventually adopt a doublet conformation. This conformation has now been observed after fixation by glutaraldehyde or osmium tetroxide, as well as by Formalin as found previously. The doublet was observed in media of different degrees of richness and under both light and electron microscopes. Electron micrographs of serial sections through the doublet were consistent with its formation by the gradual pulling apart of a single mass of DNA into two lobes. A systematic study was made of the effect of the time of shifting from the permissive to the restrictive temperature and of the restrictive temperature used on the number of nucleoids segregating within the outgrowing rod. It was established that the doublet nucleoid behaved as a single unit in replication control and segregation in both rich and poor media. Measurement of the relative position of the two segregating nucleoids within the outgrowing rod after completion of just one round of replication yielded quantitative information on the segregation and cell length extension processes. Segregation was accompanied by cell length extension at approximately equal rates on both sides of each nucleoid. Furthermore, the data were consistent with an exponential increase in such an extension with time over the early and major portion of the period studied, but it was not possible to rule out other models of length extension.  相似文献   

13.
The physical mechanism by which Escherichia coli segregates copies of its chromosome for partitioning into daughter cells is unknown, partly due to the difficulty in interpreting the complex dynamic behavior during segregation. Analysis of previous chromosome segregation measurements in E. coli demonstrates that the origin of replication exhibits processive motion with a mean displacement that scales as t0.32. In this work, we develop a model for segregation of chromosomal DNA as a Rouse polymer in a viscoelastic medium with a force applied to a single monomer. Our model demonstrates that the observed power-law scaling of the mean displacement and the behavior of the velocity autocorrelation function is captured by accounting for the relaxation of the polymer chain and the viscoelastic environment. We show that the ratio of the mean displacement to the variance of the displacement during segregation events is a critical metric that eliminates the compounding effects of polymer and medium dynamics and provides the segregation force. We calculate the force of oriC segregation in E. coli to be ∼0.49 pN.  相似文献   

14.
DNA replication in Escherichia coli is initiated by DnaA binding to oriC, the replication origin. During the process of assembly of the replication factory, the DnaA is released back into the cytoplasm, where it is competent to reinitiate replication. Premature reinitiation is prevented by binding SeqA to newly formed GATC sites near the replication origin. Resolution of the resulting SeqA cluster is one aspect of timing for reinitiation. A Markov model accounting for the competition between SeqA binding and methylation for one or several GATC sites relates the timing to reaction rates, and consequently to the concentrations of SeqA and methylase. A model is proposed for segregation, the motion of the two daughter DNAs into opposite poles of the cell before septation. This model assumes that the binding of SeqA and its subsequent clustering results in loops from both daughter nucleoids attached to the SeqA cluster at the GATC sites. As desequestration occurs, the cluster is divided in two, one associated with each daughter. As the loops of DNA uncoil, the two subclusters migrate apart due to the Brownian ratchet effect of the DNA loop.  相似文献   

15.
Analogously to chromosome cohesion in eukaryotes, newly replicated DNA in E. coli is held together by inter-sister linkages before partitioning into daughter nucleoids. In both cases, initial joining is apparently mediated by DNA catenation, in which replication-induced positive supercoils diffuse behind the fork, causing newly replicated duplexes to twist around each other. Type-II topoisomerase-catalyzed sister separation is delayed by the well-characterized cohesin complex in eukaryotes, but cohesion control in E. coli is not currently understood. We report that the abundant fork tracking protein SeqA is a strong positive regulator of cohesion, and is responsible for markedly prolonged cohesion observed at “snap” loci. Epistasis analysis suggests that SeqA stabilizes cohesion by antagonizing Topo IV-mediated sister resolution, and possibly also by a direct bridging mechanism. We show that variable cohesion observed along the E. coli chromosome is caused by differential SeqA binding, with oriC and snap loci binding disproportionally more SeqA. We propose that SeqA binding results in loose inter-duplex junctions that are resistant to Topo IV cleavage. Lastly, reducing cohesion by genetic manipulation of Topo IV or SeqA resulted in dramatically slowed sister locus separation and poor nucleoid partitioning, indicating that cohesion has a prominent role in chromosome segregation.  相似文献   

16.
Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 Å resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeae and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.  相似文献   

17.
SeqA is a negative regulator of DNA replication in Escherichia coli and related bacteria that functions by sequestering the origin of replication and facilitating its resetting after every initiation event. Inactivation of the seqA gene leads to unsynchronized rounds of replication, abnormal localization of nucleoids and increased negative superhelicity. Excess SeqA also disrupts replication synchrony and affects cell division. SeqA exerts its functions by binding clusters of transiently hemimethylated GATC sequences generated during replication. However, the molecular mechanisms that trigger formation and disassembly of such complex are unclear. We present here the crystal structure of a dimeric mutant of SeqA [SeqAΔ(41–59)-A25R] bound to tandem hemimethylated GATC sites. The structure delineates how SeqA forms a high-affinity complex with DNA and it suggests why SeqA only recognizes GATC sites at certain spacings. The SeqA–DNA complex also unveils additional protein–protein interaction surfaces that mediate the formation of higher ordered complexes upon binding to newly replicated DNA. Based on this data, we propose a model describing how SeqA interacts with newly replicated DNA within the origin of replication and at the replication forks.  相似文献   

18.
The mechanisms driving bacterial chromosome segregation remain poorly characterized. While a number of factors influencing chromosome segregation have been described in recent years, none of them appeared to play an essential role in the process comparable to the eukaryotic centromere/spindle complex. The research community involved in bacterial chromosome was becoming familiar with the fact that bacteria have selected multiple redundant systems to ensure correct chromosome segregation. Over the past few years a new perspective came out that entropic forces generated by the confinement of the chromosome in the crowded nucleoid shell could be sufficient to segregate the chromosome. The segregating factors would only be required to create adequate conditions for entropy to do its job. In the article by Yazdi et al. ( 2012 ) in this issue of Molecular Microbiology, this model was challenged experimentally in live Escherichia coli cells. A Fis–GFP fusion was used to follow nucleoid choreography and analyse it from a polymer physics perspective. Their results suggest strongly that E. coli nucleoids behave as self‐adherent polymers. Such a structuring and the specific segregation patterns observed do not support an entropic like segregation model. Are we back to the pre‐entropic era?  相似文献   

19.
Serine-type phage integrases catalyze unidirectional site-specific recombination between the attachment sites, attP and attB, in the phage and host bacterial genomes, respectively; these integrases and DNA target sites function efficiently when transferred into heterologous cells. We previously developed an in vivo site-specific genomic integration system based on actinophage TG1 integrase that introduces ~2-kbp DNA into an att site inserted into a heterologous Escherichia coli genome. Here, we analyzed the TG1 integrase-mediated integrations of att site-containing ~10-kbp DNA into the corresponding att site pre-inserted into various genomic locations; moreover, we developed a system that introduces ~10-kbp DNA into the genome with an efficiency of ~104 transformants/μg DNA. Integrations of attB-containing DNA into an attP-containing genome were more efficient than integrations of attP-containing DNA into an attB-containing genome, and integrations targeting attP inserted near the replication origin, oriC, and the E. coli “centromere” analogue, migS, were more efficient than those targeting attP within other regions of the genome. Because the genomic region proximal to the oriC and migS sites is located at the extreme poles of the cell during chromosomal segregation, the oriCmigS region may be more exposed to the cytosol than are other regions of the E. coli chromosome. Thus, accessibility of pre-inserted attP to attB-containing incoming DNA may be crucial for the integration efficiency by serine-type integrases in heterologous cells. These results may be beneficial to the development of serine-type integrases-based genomic integration systems for various bacterial species.  相似文献   

20.
The Escherichia coli SeqA protein forms complexes with new, hemimethylated DNA behind replication forks and is important for successful replication during rapid growth. Here, E. coli cells with two simultaneously replicating chromosomes (multifork DNA replication) and YFP tagged SeqA protein was studied. Fluorescence microscopy showed that in the beginning of the cell cycle cells contained a single focus at midcell. The focus was found to remain relatively immobile at midcell for a period of time equivalent to the duration of origin sequestration. Then, two abrupt relocalization events occurred within 2–6 minutes and resulted in SeqA foci localized at each of the cell’s quarter positions. Imaging of cells containing an additional fluorescent tag in the origin region showed that SeqA colocalizes with the origin region during sequestration. This indicates that the newly replicated DNA of first one chromosome, and then the other, is moved from midcell to the quarter positions. At the same time, origins are released from sequestration. Our results illustrate that newly replicated sister DNA is segregated pairwise to the new locations. This mode of segregation is in principle different from that of slowly growing bacteria where the newly replicated sister DNA is partitioned to separate cell halves and the decatenation of sisters a prerequisite for, and possibly a mechanistic part of, segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号