共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromatin dynamics during the plant cell cycle 总被引:1,自引:0,他引:1
Sanchez Mde L Caro E Desvoyes B Ramirez-Parra E Gutierrez C 《Seminars in cell & developmental biology》2008,19(6):537-546
2.
The Polycomb Group (PcG) of epigenetic regulators maintains the repressed state of Hox genes during development of Drosophila, thereby maintaining the correct patterning of the anteroposterior axis. PcG-mediated inheritance of gene expression patterns must be stable to mitosis to ensure faithful transmission of repressed Hox states during cell division. Previously, two PcG mutants, polyhomeotic and Enhancer of zeste, were shown to exhibit mitotic segregation defects in embryos, and condensation defects in imaginal discs, respectively. We show that polyhomeotic(proximal) but not polyhomeotic(distal) is necessary for mitosis. To test if other PcG genes have roles in mitosis, we examined embryos derived from heterozygous PcG mutant females for mitotic defects. Severe defects in sister chromatid segregation and nuclear fallout, but not condensation are exhibited by Polycomb, Posterior sex combs and Additional sex combs. By contrast, mutations in Enhancer of zeste (which encodes the histone methyltransferase subunit of the Polycomb Repressive Complex 2) exhibit condensation but not segregation defects. We propose that these mitotic defects in PcG mutants delay cell cycle progression. We discuss possible mitotic roles for PcG proteins, and suggest that delays in cell cycle progression might lead to failure of maintenance. 相似文献
3.
Vuthy Ea Tom Sexton Thierry Gostan Laurie Herviou Marie-Odile Baudement Yunzhe Zhang Soizik Berlivet Marie-No?lle Le Lay-Taha Guy Cathala Annick Lesne Jean-Marc Victor Yuhong Fan Giacomo Cavalli Thierry Forné 《BMC genomics》2015,16(1)
Background
In higher eukaryotes, the genome is partitioned into large "Topologically Associating Domains" (TADs) in which the chromatin displays favoured long-range contacts. While a crumpled/fractal globule organization has received experimental supports at higher-order levels, the organization principles that govern chromatin dynamics within these TADs remain unclear. Using simple polymer models, we previously showed that, in mouse liver cells, gene-rich domains tend to adopt a statistical helix shape when no significant locus-specific interaction takes place.Results
Here, we use data from diverse 3C-derived methods to explore chromatin dynamics within mouse and Drosophila TADs. In mouse Embryonic Stem Cells (mESC), that possess large TADs (median size of 840 kb), we show that the statistical helix model, but not globule models, is relevant not only in gene-rich TADs, but also in gene-poor and gene-desert TADs. Interestingly, this statistical helix organization is considerably relaxed in mESC compared to liver cells, indicating that the impact of the constraints responsible for this organization is weaker in pluripotent cells. Finally, depletion of histone H1 in mESC alters local chromatin flexibility but not the statistical helix organization. In Drosophila, which possesses TADs of smaller sizes (median size of 70 kb), we show that, while chromatin compaction and flexibility are finely tuned according to the epigenetic landscape, chromatin dynamics within TADs is generally compatible with an unconstrained polymer configuration.Conclusions
Models issued from polymer physics can accurately describe the organization principles governing chromatin dynamics in both mouse and Drosophila TADs. However, constraints applied on this dynamics within mammalian TADs have a peculiar impact resulting in a statistical helix organization.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1786-8) contains supplementary material, which is available to authorized users. 相似文献4.
6.
7.
Yasuko Murakami Jun-ichiro Suzuki Kenjiro Kikuchi Tomasz Hascilowicz Noriyuki Murai Takami Oka 《Experimental cell research》2009,315(13):2301-634
Antizyme inhibitor (AIn), a homolog of ODC, binds to antizyme and inactivates it. We report here that AIn increased at the G1 phase of the cell cycle, preceding the peak of ODC activity in HTC cells in culture. During interphase AIn was present mainly in the cytoplasm and turned over rapidly with the half-life of 10 to 20 min, while antizyme was localized in the nucleus. The level of AIn increased again at the G2/M phase along with ODC, and the rate of turn-over of AIn in mitotic cells decreased with the half-life of approximately 40 min. AIn was colocalized with antizyme at centrosomes during the period from prophase through late anaphase and at the midzone/midbody during telophase. Thereafter, AIn and antizyme were separated and present at different regions on the midbody at late telophase. AIn disappeared at late cytokinesis, whereas antizyme remained at the cytokinesis remnant. Reduction of AIn by RNA interference caused the increase in the number of binucleated cells in HTC cells in culture. These findings suggested that AIn contributed to a rapid increase in ODC at the G1 phase and also played a role in facilitating cells to complete mitosis during the cell cycle. 相似文献
8.
To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation. [BMB Reports 2013; 46(6): 289-294] 相似文献
9.
Summary Interphase cells ofDictyota dichotoma (Hudson) Lamour. lack cortical microtubules (Mts) but display an impressive network of cytoplasmic microtubules (c-Mts). These are focussed on two opposed perinuclear centriolar sites where centrin or a centrin-homologue is localized. Some of the Mts surround the nucleus, but the majority traverse the cytoplasm as bundles variously directed towards the plasmalemma. In apical cells, and to a lesser extent in the square or slightly elongated meristematic cells, Mts are more or less evenly arranged. In elongated cells they form thick bundles longitudinally traversing the cytoplasm; a pattern maintained in differentiated cells. In early prophase the non-perinuclear Mts disappear but by late prophase a bi-astral arrangement of short Mts is observed. They enter polar nuclear depressions and attach to differentiated regions of the nuclear envelope where polar gaps open. By metaphase the spindle Mts converge on the centrioles at the polar gaps. At anaphase, interzonal Mts are evident and the asters start to reassemble. After telophase disruption of the interzonal Mts, the daughter nuclei approach each other, but move apart again before cytokinesis. The latter movement keeps pace with the development of two interdigitating Mt systems, ensheathing both daughter nuclei. The partition membrane bisects this Mt cage. Between telophase and cytokinesis the centrosomes separate, finally occupying opposed perinuclear sites. New Mts arise at the new centrosomes, some terminating on the consolidating partition membrane. Our data show thatD. dichotoma vegetative cells display a prominent cytoplasmic Mt cytoskeleton, which undergoes continual, but definite, change in organization during the cell cycle. 相似文献
10.
11.
Vanadium is a metal widely distributed in the environment. It is also a dietary micronutrient. It has shown insulin mimetic and chemopreventive properties and has been considered as an important pharmacological agent. In this study, we evaluated the apoptogenic role of vanadium on human breast cancer cell line MCF7. Exposure of MCF7 cells to vanadium led to the induction of apoptosis in a dose-dependent manner. Percentage of apoptosis was maximum (42.5%) at the highest non-toxic dose (250 microM). It was found that vanadium treatment brought about a prominent chromatin condensation, cell cycle arrest leading to apoptosis. These apoptosis based assays demonstrate that vanadium has the potential to be developed into an anti-cancer drug in the near future. 相似文献
12.
Expression of CKS1At in Arabidopsis thaliana indicates a role for the protein in both the mitotic and the endoreduplication cycle 总被引:2,自引:0,他引:2
Jacqmard A De Veylder L Segers G de Almeida Engler J Bernier G Van Montagu M Inze D 《Planta》1999,207(4):496-504
Although endoreduplication is common in plants, little is known about the mechanisms regulating this process. Here, we report
the patterns of endoreduplication at the cellular level in the shoot apex of Arabidopsis thaliana L. Heynh. plants grown under short-day conditions. We show that polyploidy is developmentally established in the pith, maturing
leaves, and stipules. To investigate the role of the cell cycle genes CDC2aAt, CDC2bAt, CYCB1;1, and CKS1At in the process of endoreduplication, in-situ hybridizations were performed on the vegetative shoot apices. Expression of
CDC2aAt, CDC2bAt, and CYCB1;1 was restricted to mitotically dividing cells. In contrast, CKS1At expression was present in both mitotic and endoreduplicating tissues. Our data indicate that CDC2aAt, CDC2bAt, and CYCB1;1
only operate during mitotic divisions, whereas CKS1At may play a role in both the mitotic and endoreduplication cycle.
Received: 11 May 1998 / Accepted: 29 September 1998 相似文献
13.
14.
Marcelle L. Wilhelm F. Xavier Wilhelm Barbara Toublan Raymond Jalouzot 《FEBS letters》1982,150(2):439-444
DNase I was used as a probe to detect conformational changes of the H4 histone gene of Physarum polycephalum during the cell cycle. The degradation of histone genes was followed by gel electrophoresis and hybridization with a probe for the H4 histone gene. It was found that even during mitosis when chromatin is condensed into chromosomes, the histone genes are preferentially degraded by DNase I. The histone genes retain a characteristic structure which is recognized by DNase I during all stages of the cell cycle and thus independently of the biosynthesis of histones. 相似文献
15.
大量研究表明,病毒感染细胞时,病毒编码的蛋白或DNA可以扰乱细胞周期通路:促进细胞向S期转化或者使细胞静息于G2/M期。在细胞内,细胞周期的调控机制十分复杂,其包含了由DNA损伤导致的细胞通路活化及其他方式。关于病毒对细胞周期的调控方式及细胞周期的改变对于病毒感染的研究已取得一定进展。对于病毒的此类研究可以揭示细胞活动中的关键调控因子及细胞周期检查点的具体分子机理。对病毒调控宿主细胞周期以达到自身最大化复制的机理进行综述。 相似文献
16.
Elida K. Boon-Niermeijer 《Development genes and evolution》1976,180(4):241-252
Summary The effect of a heat shock (37.0–38.0°C, 10 min) during the third and fourth cleavage cycles ofLymnaea was investigated. The sensitivity with respect to the duration of the cell cycle and morphogenesis appeared to be periodic. The cycle extension curve has three maxima: at the beginning of the cycle, at the G2-phase, and at prometaphase. With regard to morphogenesis, the eggs become sensitive shortly before cleavage, when cleavage cannot be delayed any more.In eggs treated at the morphogenetically sensitive stages, mitotic abnormalities caused by an incomplete separation of the chromosomes during treatment were observed. Some cells were lethally affected, and the division chronology was abnormal in some embryos.It is concluded that heat shock disturbs a process relevant to the cell cycle. If applied before metaphase, an extension of the cell cycle permits a complete recovery and morphogenesis remains unaffected. If applied at metaphase or later, cell division is not delayed, but mitosis is seriously disturbed. This irreversible damage is the cause of abnormal morphogenesis. The type of malformation depends on the prospective significance of the affected blastomeres. 相似文献
17.
Zhang P 《Current opinion in cell biology》1999,11(6):655-662
The existence of families of cell cycle regulators reflects the need by a developing organism to precisely control proliferation of its cells and also suggests that family members may play redundant roles. Recent advances have shown redundancy to be a theme in development. 相似文献
18.
S C Tripathi 《Biology of the cell / under the auspices of the European Cell Biology Organization》1989,67(3):351-353
Sail-sheet Cultures (SSC) are those in which the cells are i) grown within the meshes of inert grids ii) exposed to nutrients from most sides iii) attached to one another only at the edges like sail of a yacht (hence, the name 'sail-sheet') and iv) have the advantage of three-dimensional structure similar to an in vivo situation. We grew fibroblasts from chicken heart explants as SSC and studied the effect of mechanical stretching on the F-actin content of these cells. This study was designed to investigate the hypothesis that the effect of tension on the cell cycle may be channeled through the microfilaments. Data from this preliminary study suggested that short-term mechanical stretching of sail-sheets, using low frequency tension (1.0 Hz), diminishes F-actin. Thus, it may be possible to relate the decrease in the F-actin content of these cells to the slowing down of their locomotory activity, possible rounding up, and division. This study might contribute to the understanding of the mechanical control of the cell cycle and be of relevance in the phenomena such as healing of wounds and control of the cell division in tumors. 相似文献
19.
Taniguchi N Caramés B Hsu E Cherqui S Kawakami Y Lotz M 《The Journal of biological chemistry》2011,286(48):41489-41498
The superficial zone (SZ) of articular cartilage is critical in maintaining tissue function and homeostasis and represents the site of the earliest changes in osteoarthritis (OA). The expression of chromatin protein HMGB2 is restricted to the SZ, which contains cells expressing mesenchymal stem cell (MSC) markers. Age-related loss of HMGB2 and gene deletion are associated with reduced SZ cellularity and early onset OA. This study addressed HMGB2 expression patterns in MSC and its role during differentiation. HMGB2 was detected at higher levels in human MSC as compared with human articular chondrocytes, and its expression declined during chondrogenic differentiation of MSC. Lentiviral HMGB2 transduction of MSC suppressed chondrogenesis as reflected by an inhibition of Col2a1 and Col10a1 expression. Conversely, in bone marrow MSC from Hmgb2(-/-) mice, Col10a1 was more strongly expressed than in wild-type MSC. This is consistent with in vivo results from mouse growth plates showing that Hmgb2 is expressed in proliferating and prehypertrophic zones but not in hypertrophic cartilage where Col10a1 is strongly expressed. Osteogenesis was also accelerated in Hmgb2(-/-) MSC. The expression of Runx2, which plays a major role in late stage chondrocyte differentiation, was enhanced in Hmgb2(-/-) MSC, and HMGB2 negatively regulated the stimulatory effect of Wnt/β-catenin signaling on the Runx2 proximal promoter. These results demonstrate that HMGB2 expression is inversely correlated with the differentiation status of MSC and that HMGB2 suppresses chondrogenic differentiation. The age-related loss of HMGB2 in articular cartilage may represent a mechanism responsible for the decline in adult cartilage stem cell populations. 相似文献
20.
Dinoflagellates are protists with permanently condensed chromosomes that lack histones and whose nuclear membrane remains intact during mitosis. These unusual nuclear characters have suggested that the typical cell cycle regulators might be slightly different than those in more typical eukaryotes. To test this, a cyclin has been isolated from the dinoflagellate Gonyaulax polyedra by functional complementation in cln123 mutant yeast. This GpCyc1 sequence contains two cyclin domains in its C-terminal region and a degradation box typical of mitotic cyclins. Similar to other dinoflagellate genes, GpCyc1 has a high copy number, with approximately 5000 copies found in the Gonyaulax genome. An antibody raised against the N-terminal region of the GpCYC1 reacts with a 68kDa protein on Western blots that is more abundant in cell cultures enriched for G2-phase cells than in those containing primarily G1-phase cells, indicating its cellular level follows a pattern expected for a mitotic cyclin. This is the first report of a cell cycle regulator cloned and sequenced from a dinoflagellate, and our results suggest control of the dinoflagellate cell cycle will be very similar to that of other organisms. 相似文献