首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of an α-crystallin domain documents the evolutionary relatedness of the ubiquitous family of small heat shock proteins. Sequence and three-dimensional structure provide no evidence for the presence of such a domain in HSPC034, recently proposed as the 11th member of the human HSPB family. Also, phylogenetic analyses detect no relationship between HSPC034 and the human HSPB1–10 sequences. Arguments are provided as to why inclusion in the HSPB family of proteins like HSPC034, which resemble small heat shock proteins in being heat-inducible and having chaperone-like properties and a low monomeric mass, but are evolutionarily unrelated, is misleading and confusing.  相似文献   

2.
Chen H  Chu Z  Zhang Y  Yang S 《Biotechnology letters》2006,28(14):1089-1094
The gene encoding a small heat shock protein (sHSP) from Pyrococcus furiosus was redesigned and chemically synthesized by using bacteria-preferred codons. The gene product was over-expressed in Escherichia coli BL21(DE)3 and purified to homogeneity. In the presence of this protein, the activities of Taq DNA polymerase, DNA restriction endonuclease HindIII and lysozyme were protected at elevated temperature, and also, thermal aggregation of lysozyme was prevented by this purified recombinant sHSP.Huayou Chen, Zhongmei Chu, Contributed equally to this work  相似文献   

3.
4.
Some properties of human small heat shock protein Hsp22 (H11 or HspB8)   总被引:7,自引:0,他引:7  
Untagged recombinant human small heat shock protein with apparent molecular mass 22 kDa (Hsp22) was obtained in homogeneous state. Size exclusion chromatography and chemical crosslinking with dimethylsuberimidate indicate that Hsp22 forms stable dimers. Being highly susceptible to oxidation Hsp22 forms disulfide crosslinked dimers and poorly soluble high molecular mass oligomers. According to CD spectroscopy oxidation of Hsp22 results in disturbing of both secondary and tertiary structure. Hsp22 possesses a negligibly low autophosphorylation activity and under the conditions used is unable to phosphorylate casein or histone. Hsp22 effectively prevents heat-induced aggregation of yeast alcohol dehydrogenase and bovine liver rhodanese with chaperone activity comparable to that of recombinant human small heat shock protein with apparent molecular mass 20 kDa (Hsp20).  相似文献   

5.
As a member of small heat shock proteins, HSP16.3 was identified as the major membrane-bound protein of Mycobacterium tuberculosis during stationary phase. Previous studies revealed that HSP16.3 was in a nonameric form in solution. Here, two-dimensional crystal of HSP16.3 molecules on lipid monolayer was obtained for the first time. The crystal exhibited p422 symmetry with lattice parameters a=b=90A, gamma=90 degrees. The projection map of untilted crystals showed that the basic unit of the crystal was a rod-like structure with two high-density regions. The three-dimensional map at 2.2 nm resolution revealed a rod-like structure with a dimension of 56A x 32A x 25A, similar to the dimeric forms of M. jannaschii HSP16.5 and wheat HSP16.9. Cross-linking experiments confirmed that HSP16.3 nonamers dissociated into dimers upon interaction with the positively charged lipid layer. Surface plasmon resonance measurements revealed that both electrostatic and hydrophobic forces involved in the formation of the 2D crystal on the lipid monolayer. These results provide a basis for further investigation on the unique dimeric structure of HSP16.3 and its functions in vivo.  相似文献   

6.
Small heat shock proteins (sHsps) usually exist as oligomers that undergo dynamic oligomeric dissociation/re-association, with the dissociated oligomers as active forms to bind substrate proteins under heat shock conditions. In this study, however, we found that Hsp16.3, one sHsp from Mycobacterium tuberculosis, is able to sensitively modulate its chaperone-like activity in a range of physiological temperatures (from 25 to 37.5 degrees C) while its native oligomeric size is still maintained. Further analysis demonstrated that Hsp16.3 exposes higher hydrophobic surfaces upon temperatures increasing and that a large soluble complex between Hsp16.3 and substrate is formed only in the condition of heating temperature up to 35 and 37.5 degrees C. Structural analysis by fluorescence anisotropy showed that Hsp16.3 nonameric structure becomes more dynamic and variable at elevated temperatures. Moreover, subunit exchange between Hsp16.3 oligomers was found to occur faster upon temperatures increasing as revealed by fluorescence energy resonance transfer. These observations indicate that Hsp16.3 is able to modulate its chaperone activity by adjusting the dynamics of oligomeric dissociation/re-association process while maintaining its static oligomeric size unchangeable. A kinetic model is therefore proposed to explain the mechanism of sHsps-binding substrate proteins through oligomeric dissociation. The present study also implied that Hsp16.3 is at least capable of binding non-native proteins in vivo while expressing in the host organism that survives at 37 degrees C.  相似文献   

7.
Small heat shock proteins (sHSPs), as one important subclass of molecular chaperones, are able to specifically bind to denatured substrate proteins rather than to native proteins, of which their substrate-binding sites are far from clear. Our previous study showed an overlapping nature of the sites for both hydrophobic probe 1,1'-Bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) binding and substrate binding in Mycobacterium tuberculosis Hsp16.3 [X. Fu, H. Zhang, X. Zhang, Y. Cao, W. Jiao, C. Liu, Y. Song, A. Abulimiti, Z. Chang, A dual role for the N-terminal region of M. tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins, J. Biol. Chem. 280 (2005) 6337-6348]. In this work, two bis-ANS binding sites in Hsp16.3 were identified by a combined use of reverse phase HPLC, mass spectroscopy and N-terminal protein sequencing. One site is in the N-terminal region and the other one in the N-terminus of alpha-crystallin domain, both of which are similar to those identified so far in sHSPs. However, accumulating data suggest that these two sites differentially function in binding substrate proteins. With regard to this difference, we proposed a two-step mechanism by which Hsp16.3 binds substrate proteins, i.e., substrate proteins are recognized and initially captured by the N-terminal region that is exposed in the dissociated Hsp16.3 oligomers, and then the captured substrate proteins are further stabilized in the complex by the subsequent binding of the N-terminus of alpha-crystallin domain.  相似文献   

8.
Interaction of human Bag3 with small heat shock proteins HspB6, HspB8 and its K141E mutant was analyzed by different biochemical methods. The data of size-exclusion chromatography indicate that the wild type HspB8 forms tight complexes with Bag3. K141E mutant of HspB8 and especially HspB6 weaker interact with Bag3. The data of chemical crosslinking and analytical ultracentrifugation indicate that in vitro the stoichiometry of complexes formed by HspB8 and Bag3 is variable and is dependent on concentration of protein partners. Interaction of Bag3 and HspB8 is accompanied by increase of thermal stability measured by intrinsic tryptophan fluorescence and increased resistance to limited chymotrypsinolysis. The data of size-exclusion chromatography, analytical ultracentrifugation and limited proteolysis indicate that Bag3 belongs to the group of intrinsically disordered proteins. It is supposed that having unordered structure Bag3 might weakly interact with different small heat shock proteins which recognize unfolded proteins and this interaction is especially strong with intrinsically disordered HspB8. The complexes formed by Bag3 and HspB8 might have variable stoichiometry and can participate in different processes including clearing of the cell from improperly folded proteins.  相似文献   

9.
Thermotolerance in cultures of Chlorella zofingiensis was induced by heat shock treatment at supraoptimal temperatures (40and 45 °C for 30 min). Thermotolerance was assayed by two methods: the survival of the cells at 70 °C and the growth of diluted cultures at 35 and 45 °C. A culture without heat shock treatment was unable to grow at 45 °C. According to eletrophoretic analyses, the synthesis of proteins of 95, 73, 60, 43 and 27 kDa was induced by heat shock treatment. The large molecular weight proteins (95, 73, 60 and43 kDa) were present in non-heat treated cells, but the heat shock treatment increased their quantity in cells. The synthesis of a low molecular weight protein (27 kDa) was induced by heat shock treatment. The induced thermotolerance could be inhibited by the presence of an 80S ribosomal translation inhibitor, cycloheximide(CHI). The first 12 amino acid residues from the N-terminus of the27 kDa heat shock induced protein are Val-Glu-Trp-Try-Gly-Pro-Asn-Arg-Ala-Lys-Phe-Leu. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Small heat shock proteins (sHsps) form large oligomers that are characterised by their dynamic behaviour, e.g., complex disassembly/reassembly and extensive subunit exchange. These processes are interrelated with sHsp/substrate interaction. sHsps bind a broad spectrum of unrelated substrate proteins under denaturing conditions. Detailed knowledge about the binding process and regions critical for sHsp/substrate interaction is missing. In this study, we screened cellulose-bound peptide spot libraries derived from a bacterial sHsp and the model-substrate citrate synthase to detect oligomerisation and substrate interaction sites, respectively. In line with previous results, it was demonstrated that multiple contacts involving the N- and C-terminal extensions and the central alpha-crystallin domain are required for oligomerisation. Incubation of the citrate synthase membrane with sHsps revealed a putative substrate interaction site. A soluble peptide with the sequence RTKYWELIYEDCMDL (CS(191-205)) corresponding to that site inhibited chaperone activity of sHsps, presumably by blocking their substrate-binding sites.  相似文献   

11.
12.
Pigs from a population consisting of eight US breeds or strains and three Chinese breeds were examined by restriction fragment length polymorphism (RFLP) analysis of the heat shock protein HSP70 gene(s). Limited polymorphisms with PstI and PvuII restriction enzymes were observed, but there were no polymorphisms with BomIII and BglI.  相似文献   

13.
14.
Searching EST databases for new members of the human small heat shock protein family, we recently identified HSPB9, which is expressed exclusively in testis as determined by Northern blotting (Kappé et al., Biochim. Biophys. Acta 1520, 1-6, 2001). Here we confirm this testis-specific expression pattern by RT-PCR in a larger series of normal tissues. Interestingly, while screening HSPB9 ESTs, we also noted expression in tumours, which could be verified by RT-PCR. Protein expression of HSPB9 was also detected in normal human testis and various tumour samples using immunohistochemical staining. We thus conclude that HSPB9 belongs to the steadily growing number of cancer/testis antigens. To get a better understanding of the function of HSPB9, we performed a yeast two-hybrid screen to search for HSPB9-interacting proteins. TCTEL1, a light chain component of cytoplasmic and flagellar dynein, interacted in both the yeast two-hybrid system and in immunoprecipitation experiments with HSPB9. Additionally, immunohistochemical staining showed co-expression of HSPB9 and TCTEL1 in similar stages of spermatogenesis and in tumour cells. The possible functional significance of this interaction is discussed.  相似文献   

15.
Effect of recombinant chicken small heat shock protein with molecular mass 24 kDa (Hsp24) and recombinant human small heat shock protein with molecular mass 27 kDa (Hsp27) on the heat-induced denaturation and aggregation of skeletal F-actin was analyzed by means of differential scanning calorimetry and light scattering. All small heat shock proteins did not affect thermal unfolding of F-actin measured by differential scanning calorimetry, but effectively prevented aggregation of thermally denatured actin. Small heat shock protein formed stable complexes with denatured (but not with intact) F-actin. The size of these highly soluble complexes was smaller than the size of intact F-actin filaments. It is supposed that protective effect of small heat shock proteins on the cytoskeleton is at least partly due to prevention of aggregation of denatured actin.  相似文献   

16.
Small heat shock proteins (shsps) are molecular chaperones that are inducible by environmental stress. In this study, immunocytochemical analysis and laser scanning confocal microscopy revealed that the shsp family, hsp30, was localized primarily in the cytoplasm of Xenopus A6 kidney epithelial cells after heat shock or sodium arsenite treatment. Heat shock-induced hsp30 was enriched in the perinuclear region with some immunostaining in the nucleus but not in the nucleolus. In sodium arsenite-treated cells hsp30 was enriched towards the cytoplasmic periphery as well as showing some immunostaining in the nucleus. At higher heat shock temperatures (35 degrees C) or after 10 microM sodium arsenite treatment, the actin cytoskeleton displayed some disorganization that co-localized with areas of hsp30 enrichment. Treatment of A6 cells with 50 microM sodium arsenite induced a collapse of the cytoskeleton around the nucleus. These results coupled with previous studies suggest that stress-inducible hsp30 acts as a molecular chaperone primarily in the cytoplasm and may interact with cytoskeletal proteins.  相似文献   

17.
Small heat shock proteins (sHsps) are molecular chaperones employed to interact with a diverse range of substrates as the first line of defense against cellular protein aggregation. The N-terminal region (NTR) is implicated in defining features of sHsps; notably in their ability to form dynamic and polydisperse oligomers, and chaperone activity. The physiological relevance of oligomerization and chemical-scale mode(s) of chaperone function remain undefined. We present novel chemical tools to investigate chaperone activity and substrate specificity of human HspB1 (B1NTR), through isolation of B1NTR and development of peptide-conjugated gold nanoparticles (AuNPs). We demonstrate that B1NTR exhibits chaperone capacity for some substrates, determined by anti-aggregation assays and size-exclusion chromatography. The importance of protein dynamics and multivalency on chaperone capacity was investigated using B1NTR-conjugated AuNPs, which exhibit concentration-dependent chaperone activity for some substrates. Our results implicate sHsp NTRs in chaperone activity, and demonstrate the therapeutic potential of sHsp-AuNPs in rescuing aberrant protein aggregation.  相似文献   

18.
This study describes the identification and characterization of the Babesia divergens α-crystallin/small heat shock protein 20 (BdHSP-20). BdHSP-20 was recognized by the DG7 monoclonal antibody (DG7 mAb) originally produced by Precigout et al. [Precigout, E., Valentin, A., Carcy, B., Gorenflot, A., Nakamura, K., Aikawa, M., Schrevel, J. 1993. Babesia divergens: characterization of a 17-kDa merozoite membrane protein. Experimental Parasitology 77, 425-434] against B. divergens merozoites. We used DG7 mAb to immunoscreen a B. divergens cDNA library to clone the gene encoding the small heat shock protein. Bdhsp-20 is a single copy gene interrupted by one intron. The deduced gene product (BdHSP-20) clearly belongs to the α-crystallin family and shows significant homology to Babesia bovis, Plasmodiumfalciparum and Toxoplasma gondii sHSPs, with the highest degree of sequence identity around the catalytic domain. Nutritient stress (serum depletion) treatment of the parasites induced the upregulation of BdHSP-20 gene expression observed by semi-quantitative PCR and immunoprecipitation. This regulation pattern suggests that BdHSP-20 could probably be of importance for parasite survival in the case of environmental stress. BdHSP-20 has previously been shown to be highly conserved among different strains and antibodies against the protein drastically reduce parasitemia in vitro.  相似文献   

19.
20.
CD44v6 is a splice variant of CD44 (CD44v), probably promoting cancer cell adherence to vascular endothelium and base membranes and enhancing the invasion and metastasis of colonic carcinomas. Heat shock protein 72 (HSP72) as a molecular chaperone has been confirmed to be overexpressed in epithelial carcinoma cells. There may be a possible association between the expression of HSP72 and CD44v6 during the growth and progression of colonic carcinoma cells. The aim of the study was to investigate the interaction between heat shock protein 72 and CD44v6 in human colonic carcinomas. The localization of HSP72 and CD44v6 in human colonic carcinomas was determined by immunohistochemistry and confocal laser microscopy. The interaction between HSP72 and CD44v6 in colonic carcinoma cells was analyzed by immunoprecipitation and Western immunoblots. Our results revealed that colonic carcinoma synchronously co-expressed higher levels of HSP72 and CD44v6 than that in adjacent normal colonic tissues. HSP72 and CD44v6 were mainly immunolocalized in the cytoplasm, and also immunolabelled on the cell membrane. Based on immunoprecipitation and Western immunoblots, we found that HSP72 was associated with CD44v6 precursor fragments in human colonic carcinoma cells. The interaction between HSP72 and CD44v6 in human colonic carcinoma cells may contribute to study the pathogenesis and immunotherapy of colonic carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号