首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impairments in muscle activation have been linked to increased risk of developing shoulder pathologies such as subacromial impingement syndrome (SIS) and associated rotator cuff injuries. Individuals with SIS have demonstrated increased upper trapezius (UT) muscle activation and reduced serratus anterior (SA) and lower trapezius (LT) muscle activation, which can be collectively represented as ratios (UT/SA and UT/LT). Targeted exercise is an important component of shoulder rehabilitation programs to re-establish optimal muscle activation and ratios. Electromyography (EMG) biofeedback during exercise has been shown to reduce UT activation and favorably alter scapular muscle activation ratios, however, a literature gap exists regarding the efficacy of other types of biofeedback. Therefore, we compared the effects of three types of biofeedback (visual EMG, auditory, verbal cues) on UT/SA and UT/LT ratios during a seated resisted scaption exercise in fifteen subjects without shoulder pain. Baseline muscle activation was recorded and compared to real-time muscle activation during each randomized biofeedback trial. All biofeedback types showed improvements in the UT/SA and UT/LT ratios, with visual EMG demonstrating a significant change in UT/LT ratio (p < 0.05). These results suggest that biofeedback could be utilized as a component of rehabilitation programs to prevent or treat shoulder pain.  相似文献   

2.
Imbalance of neuromuscular activity in the scapula stabilizers in subjects with Subacromial Impingement Syndrome (SIS) is described in restricted tasks and specific populations. Our aim was to compare the scapular muscle activity during a voluntary movement task in a general population with and without SIS (n = 16, No-SIS = 15).Surface electromyography was measured from Serratus anterior (SA) and Trapezius during bilateral arm elevation (no-load, 1 kg, 3 kg). Mean relative muscle activity was calculated for SA and the upper (UT) and lower part of trapezius (LWT), in addition to activation ratio and time to activity onset. In spite of a tendency to higher activity among SIS 0.10–0.30 between-group differences were not significant neither in ratio of muscle activation 0.80–0.98 nor time to activity onset 0.53–0.98.The hypothesized between-group differences in neuromuscular activity of Trapezius and Serratus was not confirmed. The tendency to a higher relative muscle activity in SIS could be due to a pain-related increase in co-activation or a decrease in maximal activation. The negative findings may display the variation in the specific muscle activation patterns depending on the criteria used to define the population of impingement patients, as well as the methodological procedure being used, and the shoulder movement investigated.  相似文献   

3.
BackgroundClinician-led training through tactile and verbal guidance to improve muscle activity and joint motion are a common but understudied focus of therapeutic interventions for shoulder pain. The purpose of this study was to determine if clinician guidance changes scapulothoracic muscle activity and kinematics compared to unguided shoulder exercises.MethodsEleven participants with shoulder pain were studied. Electromyographic (EMG) sensors were placed on the serratus anterior and upper and lower trapezii. Scapulothoracic and sternoclavicular kinematics were collected using electromagnetic sensors. Five common resisted shoulder exercises were performed with the following guidance: unguided, combined (verbal and tactile cues), and verbal guidance only. One-way repeated measures ANOVAs determined the effect of guidance versus unguided conditions for each exercise.ResultsNine of ten combinations of exercise and guidance techniques demonstrated a significant effect of guidance for either muscle activity or joint kinematics. The guidance condition with the most frequent significant improvements across all variables was the combined condition. The exercises with the most frequent significant improvements across all variables were the external rotation exercises. Variables improved most frequently were: upper:lower trapezius EMG ratio (up to 11%), sternoclavicular elevation (up to 6°) and scapulothoracic internal rotation positioning (up to 8°), and sternoclavicular retraction displacement (up to 5°).ConclusionShoulder muscle activity and kinematics during exercises can be modified by tactile and verbal guidance. Most improvements in muscle activity occurred with verbal guidance during external rotation exercises. Most improvements in joint positioning and movement occurred with combined guidance during external rotation exercises.  相似文献   

4.
Neuromuscular control of the scapular muscles is important in the etiology of shoulder pain. Electromyographical (EMG) biofeedback in healthy people has been shown to support a selective activation of the lower compartment of the trapezius muscle, specifically. The aim of the present paper was to investigate whether patients with Subacromial Impingement Syndrome (SIS) were able to selectively activate the individual compartments within the trapezius muscle, with and without EMG biofeedback to the same extent as healthy controls (No-SIS).Fifteen SIS and 15 No-SIS participated in the study. Sessions with and without visual biofeedback were conducted. Surface EMG was recorded from four compartments of the trapezius muscle. Selective activation was defined as activation above 12% with other muscle parts below 1.5% or activation ratio at or above 95% of the total activation. Without biofeedback significantly fewer SIS subjects than No-SIS achieved selective activation (p = 0.02–0.03).The findings of the study show that without biofeedback No-SIS had a superior scapular muscle control. However, when provided with visual EMG feedback the SIS group performed equally well as the No-SIS group. This indicated that individuals with SIS may benefit from biofeedback training to gain control of the neuromuscular function of the scapular muscle.  相似文献   

5.
PurposeThe aim of the study was to compare the kinematic parameters and the on–off pattern of the muscles of patients with multidirectional instability (MDI) treated by physiotherapy or by capsular shift and postoperative physiotherapy before and after treatment during elevation in the scapular plane.ScopeThe study was carried out on 32 patients with MDI of the shoulder treated with physiotherapy, 19 patients with MDI of the shoulder treated by capsular shift and postoperative physiotherapy, and 25 healthy subjects. The motion of skeletal elements was modeled by the range of humeral elevation, scapulothoracic angle and glenohumeral angle, scapulothoracic (ST) and glenohumeral (GH) rhythms, and relative displacement between the rotation centers of the humerus and scapula. The muscle pattern was modeled by the on–off pattern of muscles around the shoulder, which summarizes the activity duration of the investigated muscles.ResultsThe different ST and GH rhythms and the increased relative displacement between the rotation centers of the scapula and the humerus were observed in MDI patients. The physiotherapy strengthened the rotator cuff, biceps brachii, triceps brachii, deltoid muscles, and increase the neuromuscular control of the shoulder joints. Capsular shift and physiotherapy enabled bilinear ST and GH rhythms and the normal relative displacement between the rotation centers of the scapula and humerus to be restored. After surgery and physiotherapy, the duration of muscular activity was almost normal.ConclusionThe significant alteration in shoulder kinematics observed in MDI patients cannot be restored by physiotherapy only. After the capsular shift and postoperative physiotherapy angulation at 60° of ST and GH rhythms, the relative displacement between the rotation centers of the scapula and humerus and the duration of muscular activity were restored.  相似文献   

6.
The purpose of this study was to determine the effects of shoulder muscle fatigue on three dimensional scapulothoracic and glenohumeral kinematics. Twenty healthy subjects participated in this study. Three-dimensional scapulothoracic and glenohumeral kinematics were determined from electromagnetic sensors attached to the scapula, humerus, and thorax. Surface electromyographic (EMG) data were collected from the upper and lower trapezius, serratus anterior, anterior and posterior deltoid, and infraspinatus muscles. Median power frequency (MPF) values were derived from the raw EMG data and were used to indicate the degree of local muscle fatigue. Kinematic and EMG measures were collected prior to and immediately following the performance of a shoulder elevation fatigue protocol. Following the performance of the fatigue protocol subjects demonstrated more upward and external rotation of the scapula, more clavicular retraction, and less humeral external rotation during arm elevation. All muscles with the exception of the lower trapezius showed EMG signs of fatigue, the most notable being the infraspinatus and deltoid muscles. In general, greater scapulothoracic motion and less glenohumeral motion was observed following muscle fatigue. Further studies are needed to determine what effects these changes have on the soft tissues and mechanics of the shoulder complex.  相似文献   

7.
BackgroundNumerous biomechanical studies have addressed normal shoulder function and the factors that affect it. While these investigations include a mix of in-vivo clinical reports, ex-vivo cadaveric studies, and computer-based simulations, each has its own strengths and limitations. A robust methodology is essential in cadaveric work but does not always come easily. Precise quantitative measurements are difficult in in-vivo studies, and simulation studies require validation steps. This review focuses on ex-vivo cadaveric studies to emphasize the best research methodologies available to simulate physiologically and clinically relevant shoulder motion.MethodsA PubMed and Web of Science search was conducted in March 2017 (and updated in May 2018) to identify the cadaveric studies focused on the shoulder and its function. The key words for this search included rotator cuff (RC) injuries, RC surgery, and their synonyms. The protocol of the study was registered on PROSPERO and is accessible at CRD42017068873.ResultsThirty one studies consisting of 167 specimens with various biomechanical methods met our inclusion criteria. All studies were level V cadaveric studies. Cadaveric biomechanical models are widely used to study shoulder instability and RC repair. These models are commonly limited to the glenohumeral joint by a fixed scapula, passively and discretely move the humerus, and statically load the RC without regard for the integrity of the glenohumeral capsule.ConclusionAll studies captured in this review evaluated shoulder biomechanics. Recent studies in patients suggest that some assumptions made in this space may not fully characterize motion of the human shoulder. With reproducible scapular positioning, dynamic RC activation, and preservation of glenohumeral capsule integrity, cadaveric studies can facilitate proper validation for simulation models and broaden our understanding of the shoulder environment during motion in healthy and disease states.  相似文献   

8.
BackgroundSubacromial Impingement Syndrome (SIS) is frequently diagnosed, but treatment results vary greatly. It is increasingly reported that SIS symptoms are caused by various underlying mechanisms that need distinctive treatment strategies. We evaluated a set of specific MRI Arthrography (MRA) characteristics that have been related with underlying mechanisms for SIS in the literature, in patients with SIS.MethodsIn 47 patients diagnosed with SIS, MRA characteristics were evaluated and categorized into categories of potential underlying mechanisms: (1) extrinsic: e.g. acromion shape; (2) intrinsic: e.g. tendinosis; (3) dynamic: e.g. signs of glenohumeral (micro-)instability. Control values were obtained from the literature. With cluster analysis, potential patient subgroups were assessed.ResultsIn 17 (36.2%) patients originally diagnosed with SIS, specific other conditions were found, including rotator cuff tears and labrum lesions. In the remaining 30, all had positive signs of at least one of the predefined underlying mechanisms. Patients could be categorized into 2 groups: predominantly findings corresponding with extrinsic/structural causes, or with dynamic/(micro)instability.ConclusionsMRA characteristics in patients with SIS symptoms are heterogeneous and many patients have specific other shoulder conditions causing symptoms. Patients without specific other conditions have MRA characteristics associated with either extrinsic (structural), or dynamic (e.g. micro-instability) underlying mechanisms.  相似文献   

9.
Optimal exercise therapy for shoulder pain is unknown due to limited information regarding specific changes in muscle function associated with pain. Timing of muscle activity with respect to movement (phase) can provide information about muscle activation patterns without requiring electromyography data normalization which is problematic in the presence of pain. The aim of this study was to determine if a phase measure is able to detect differences in the timing of shoulder muscle activation in subjects with chronic shoulder pain. Fourteen subjects with pain and 14 without pain were recruited. Electromyography from eight shoulder muscles was recorded. Approximately 20 cycles of small amplitude (∼30°) rapid shoulder flexion/extension was performed. A cross-correlation and spectrographic analysis provided a measure of phase. Welch’s t-tests were used to compare mean phase angles between groups. Subjects with chronic shoulder pain had greater variability in the relative timing of muscle activation with significant differences found in the phase angles for pectoralis major, infraspinatus, supraspinatus, upper and lower trapezius and serratus anterior. This preliminary study indicates that the examination of the timing of muscle activation using a phase measure can identify significant differences in muscle function between normal subjects and those with chronic shoulder pain.  相似文献   

10.
Recent studies indicate that rotator cuff (RC) muscles are recruited in a reciprocal, direction-specific pattern during shoulder flexion and extension exercises. The main purpose of this study was to determine if similar reciprocal RC recruitment occurs during bench press (flexion-like) and row (extension-like) exercises. In addition, shoulder muscle activity was comprehensively compared between bench press and flexion; row and extension; and bench press and row exercises. Electromyographic (EMG) activity was recorded from 9 shoulder muscles sites in 15 normal volunteers. All exercises were performed at 20, 50 and 70% of subjects’ maximal load. EMG data were normalized to standard maximal voluntary contractions. Infraspinatus activity was significantly higher than subscapularis during bench press, with the converse pattern during the row exercise. Significant differences in activity levels were found in pectoralis major, deltoid and trapezius between the bench press and flexion exercises and in lower trapezius between the row and extension exercises. During bench press and row exercises, the recruitment pattern in each active muscle did not vary with load. During bench press and row exercises, RC muscles contract in a reciprocal direction-specific manner in their role as shoulder joint dynamic stabilizers to counterbalance antero-posterior translation forces.  相似文献   

11.
The gold standard exercise for recruitment of the lower trapezius is the Y prone exercise which is performed above 90° of shoulder elevation. However, clinicians often prescribe exercises that avoid high elevation postures during early stages of rehabilitation. Comparatively little data exists on relative muscle recruitment during lower arm elevation exercises. This study examined the EMG activity of four shoulder girdle muscles during four exercises accomplished below 90° of shoulder elevation and compared them to the Y prone while considering sex effects. Variance across exercises of the ratio between upper trapezius and lower trapezius was also explored. 32 healthy participants completed standardized muscle-specific MVCs and two repetitions of each exercise. The side lying external rotation and the wall slide exercises produced the highest peak EMG for the lower trapezius, both 33 and 29% lower than the Y Prone. For the upper trapezius to lower trapezius ratio, the side lying external rotation elicited the lowest value, followed by the Y prone and wall slide (53 and 59% respectively higher). Sex influenced some EMG values, typically interacting with exercise type. Thus, side lying external rotation and the wall slide are recommended for targeting the lower trapezius muscle during early rehabilitation.  相似文献   

12.
PurposeIt is commonly stated that supraspinatus initiates abduction; however, there is no direct evidence to support this claim. Therefore, the aims of the present study were to determine whether supraspinatus initiates shoulder abduction by activating prior to movement and significantly earlier than other shoulder muscles and to determine if load or plane of movement influenced the recruitment timing of supraspinatus.MethodsElectromyographic recordings were taken from seven shoulder muscles of fourteen volunteers during shoulder abduction in the coronal and scapular planes and a plane 30° anterior to the scapular plane, at 25%, 50% and 75% of maximum load. Initial activation timing of a muscle was determined as the time at which the average activation (over a 25 ms moving window) was greater than three standard deviations above baseline measures.ResultsAll muscles tested were activated prior to movement onset. Subscapularis was activated significantly later than supraspinatus, infraspinatus, deltoid and upper trapezius, while supraspinatus, infraspinatus, upper trapezius, lower trapezius, serratus anterior and deltoid all had similar initial activation times. The effects of load or plane of movement were not significant.ConclusionsSupraspinatus is recruited prior to movement of the humerus into abduction but not earlier than many other shoulder muscles, including infraspinatus, deltoid and axioscapular muscles. The common statement that supraspinatus initiates abduction is therefore, misleading.  相似文献   

13.
Ultrasound scanning was performed at three sites above the fossa supraspinata on nine healthy subjects and five patients with myofascial shoulder pain. This method produced a well-defined depiction of the soft tissue layers above the fossa supraspinata and reproducible muscle thickness measurements. In the healthy subjects the average distance from the skin surface to the trapezius muscle was 7.7 mm and the average thickness of the trapezius muscle was 5.3 mm, and the average thickness of supraspinatus muscle was 20.0 mm. The supraspinatus muscle was thinner at the medial measuring site than at the other two sites. In contrast, a tendency towards a larger distance was seen from the skin to trapezius muscle at the medial measuring site than at the other two sites. No statistical differences were found between the two groups of subjects either at rest or during brief shoulder abductions. All the subjects performed a 30° unilateral isometric shoulder abduction test to exhaustion. The median endurance time was 33 min for the healthy subjects and only 5 min for the patients. The ratings of perceived exertion (RPE) were in line with this, since the increment in RPE with time was larger for the patients than for the healthy group. The reduced shoulder abduction endurance time in the patient group may have been related to impaired muscle function and/or pain development. During the 33-min shoulder abduction in the healthy subjects, the thickness of supraspinatus muscle increased by 14%, indicating muscle swelling, whereas the thickness of trapezius muscle remained constant. The fluid imbalance in the supraspinatus muscle compartment may well play a role in the development of muscle fatigue and the disorders found in industry resulting from prolonged work with arms elevated.  相似文献   

14.
Physiological responses to physical work were assessed for 29 female industrial sewing-machine operators during an 8-h working day under ordinary working conditions. During sewing-machine work, the average (left and right) static load in the trapezius muscle was 9% of the maximal electromyogram (EMG) amplitude (% EMGmax), while the average mean load was 15% EMGmax, and the average peak load was 23% EMGmax. The static load level was unrelated to the muscle strength of the sewing-machine operators, which for the group as a whole was within the normal range. The load levels remained unchanged during the working day, while changes in the EMG mean power frequency and zero crossing frequency rate occurred, both indicating the development of muscle fatigue in left and right trapezius muscle during the working day. In line with this, the rating of perceived exertion in the shoulder and neck region increased during. the working day. Dividing the group of sewing-machine operators into two groups, those with the highest frequency and those with the lowest frequency of shoulder/neck troubles showed that the former group had significantly lower muscle strength, despite the fact that no differences in the surface EMG during sewing were found between the two groups. It was concluded that industrial sewing-machine work involves a pattern of shoulder muscle activity which induces fatiguing processes in the shoulder and neck regions. Furthermore, since the static shoulder muscle load was independent of muscle strength, factors other than working posture may be of significance for the static shoulder muscle load.  相似文献   

15.
BackgroundTo compare the activation of shoulder and trunk muscles between six pairs of closed (CC) and open chain (OC) exercises for the upper extremity, matched for performance characteristics. The secondary aims were to compare shoulder and trunk muscle activation and shoulder activation ratios during each pair of CC and OC exercise.MethodsTwenty-two healthy young adults were recruited. During visit 1, the 5-repetition maximum resistance was established for each CC and OC exercise. During visit 2, electromyography activation from the infraspinatus (INF), deltoid (DEL), serratus anterior (SA), upper, middle and lower trapezius (UT, MT, LT), erector spinae (ES) and external oblique (EO) muscles was collected during 5-repetition max of each exercise. Average activation was calculated during the concentric and eccentric phases of each exercises. Activation ratios (DEL/INF, UT/LT, UT/MT, UT/SA) were also calculated. Linear mixed models compared the activation by muscle collapsed across CC and OC exercises. A paired t-test compared the activation of each muscle and the activation ratios (DEL/INF, UT/LT, UT/MT, UT/SA) between each pair of CC and OC exercises.ResultsThe INF, LT, ES, and EO had greater activation during both concentric (p = 0.03) and eccentric (p < 0.01) phases of CC versus OC exercises. Activation ratios were lower in CC exercises compared to OC exercises (DEL/INF, 3 pairs; UT/LT, 2 pairs; UT/MT, 1 pair; UT/SA, 3 pairs).ConclusionUpper extremity CC exercises generated greater activation of shoulder and trunk muscles compared to OC exercises. Some of the CC exercises produced lower activation ratios compared to OC exercises.  相似文献   

16.
Background: Plyometric shoulder exercises are commonly used to progress from slow analytical strength training to more demanding high speed power training in the return to play phase after shoulder injury. The aim of this study was first, to investigate scapular muscle activity in plyometric exercises to support exercise selection in practice and second, to enhance understanding of how scapular muscles are recruited during the back and forth movement phase of these exercises. Methods: Thirty-two healthy subjects performed 10 plyometric exercises while surface EMG-activity of the scapular muscles (upper (UT), middle (MT) and lower trapezius (LT) and serratus anterior (SA)) was registered. A high speed camera tracked start and end of the back and forth movement. Results: Mean scapular EMG activity during the 10 exercises ranged from 14.50% to 76.26%MVC for UT, from 15.19% to 96.55%MVC for MT, from 13.18% to 94.35%MVC for LT and from 13.50% to 98.50%MVC for SA. Anova for repeated measures showed significant differences in scapular muscle activity between exercises (p < 0.001) and between the back and forth movement (p < 0.001) within exercises. Conclusion: Plyometric shoulder exercises require moderate (31–60%MVC) to high (>60%MVC) scapular muscle activity. Highest MT/LT activity was present in prone plyometric external rotation and flexion. Highest SA activity was found in plyometric external rotation and flexion with Xco and plyometric push up on Bosu. Specific exercises can be selected that recruit minimal levels of UT activity (<15%): side lying plyometric external rotation and horizontal abduction or plyometric push up on the Bosu. The results of this study support exercise selection for clinical practice.  相似文献   

17.
BackgroundMuscle imbalance between serratus anterior (SA), upper trapezius (UA), middle trapezius (MT), and lower trapezius (LT) muscles has been observed in subjects with subacromial impingement syndrome (SAIS).Objective(1) To investigate the effect of electromyography (EMG) biofeedback training on muscle balance ratios and scapular kinematics in healthy adults and subjects with SAIS. (2) To investigate whether the effects of EMG biofeedback on muscle balance ratios are different between groups.DesignTwelve healthy adults and 13 subjects with SAIS were recruited in this study. EMG was used to record the activity of scapular muscles. The ratios (UT/SA, UT/MT, and UT/LT) during exercises with/without EMG biofeedback were calculated. Scapular kinematics were recorded before and after exercises with/without EMG biofeedback.ResultsFor the subjects with SAIS, muscle balance ratios were lower during forward flexion with EMG biofeedback than during exercise only (UT/SA: 70.3–45.2; UT/LT: 124.8–94.6). Additionally, similar results were found during side-lying external rotation (UT/MT: 58.5–36.4). For the scapular upward rotation and tipping in both groups, there were no significant differences with and without EMG biofeedback.ConclusionEMG biofeedback improved the scapular muscular balance during training exercises in both groups. Further clinical trials should investigate the long-term effects of EMG biofeedback.  相似文献   

18.
Previous studies show that the scapular muscle recruitment order could possibly change according to the characteristics of the postural task. We aimed to compare the activation latencies of serratus anterior (SA), upper, middle, and lower trapezius (UT, MT and LT, respectively) between an unpredictable perturbation (sudden arm destabilization) and a predictable task (voluntary arm raise) and, to determine the differences in the muscle recruitment order in each task. The electromyographic signals of 23 participants were recorded while the tasks were performed. All scapular muscles showed earlier onset latency in the voluntary arm raise than in the sudden arm destabilization. No significant differences were observed in the muscle recruitment order for the sudden arm destabilization (p > 0.05). Conversely, for voluntary arm raise the MT, LT SA and anterior deltoid (AD) were activated significantly earlier than the UT (p < 0.001). Scapular muscles present a specific recruitment order during a predictable task: SA was activated prior to the AD and the UT after the AD, in a recruitment order of SA, AD, UT, MT, and LT. While in an unpredictable motor task, all muscles were activated after the destabilization without a specific recruitment order, but rather a simultaneous activation.  相似文献   

19.
PurposeNo direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity.MethodsSeven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests.ResultsSurface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion.ConclusionsIt is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes.  相似文献   

20.
Background: Shoulder impingement syndrome (SIS) is the second most common musculoskeletal condition that causes shoulder pain in the general population. Shoulder girdle muscle imbalance and posterior capsule tightness have been implicated as contributing factors.

Objective: The purpose of this study was to investigate the effect of shoulder stability exercises (SSEs) on hand grip strength in patients with unilateral SIS.

Methods: A total of 16 patients with a mean age of 32?±?9.3?years diagnosed with stage II unilateral SIS participated in this study. A standardized SSE programme was conducted in the clinic under the direct 1-to-1 supervision of a physical therapist thrice weekly for 4?weeks for a total of 12 sessions on the affected and non-affected shoulders. The effect of the SSE programme on isometric hand grip strength was analysed.

Results: A significant difference (p?=?.016) was observed in the hand grip strength of the affected shoulder side before and after the intervention, but no significant difference (p?=?1.0) was found in the hand grip strength of the non-affected shoulder side post-intervention.

Conclusion: The reduction in isometric hand grip strength of the affected shoulder side compared to that of the non-affected shoulder side in the same subject before the intervention shows that SIS significantly affects the hand grip strength of the affected side. SSEs significantly affect the isometric hand grip strength of SIS patients.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号