共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutamate dehydrogenase from Clostridium symbiosum has two cysteine residues, C144 and C320. The single mutant C320S and a double mutant with both cysteines replaced by serine have been compared with one another in terms of long-term stability and other properties. Specific activities and kinetic parameters were relatively little affected, but stability was improved—e.g. at 25 °C sterile, sealed samples of wild-type enzyme, C320S and the double mutant at 0.1 mg/ml in 0.1 M phosphate buffer, pH 7 lost 50%, 42% and 32% of activity over 60 days. For the first two proteins this loss was partly reversible with dithiothreitol. When wild-type enzyme was deliberately contaminated with 1 μM Cu2+ it became less stable and formed aggregates, whereas the double mutant was not affected. The double mutation thus removes a source of instability through –SH oxidation that would be accentuated by any heavy metal contamination of solutions. 相似文献
2.
Enzymes generated by natural recruitment and protein engineering have greatly contribute in various sets of applications. However, their insufficient stability is a bottleneck that limit the rapid development of biocatalysis. Novel approaches based on precise and global structural dissection, advanced gene manipulation, and combination with the multidisciplinary techniques open a new horizon to generate stable enzymes efficiently. Here, we comprehensively introduced emerging advances of protein engineering strategies for enzyme stabilization. Then, we highlighted practical cases to show importance of enzyme stabilization in pharmaceutical and industrial applications. Combining computational enzyme design with molecular evolution will hold considerable promise in this field. 相似文献
3.
A continuous evolutionary pressure of the biotic and abiotic world has led to the development of a diversity of microbial pathways to degrade and biomineralize aromatic and heteroaromatic compounds. The heterogeneity of compounds metabolized by bacteria like Pseudomonas putida indicates the large variety of enzymes necessary to catalyse the required reactions. Quinoline, a N-heterocyclic aromatic compound, can be degraded by microbes along different pathways. For P. putida 86 quinoline degradation by the 8-hydroxycoumarin pathway has been described and several intermediates were identified. To select enzymes catalysing the later stages of the 8-hydroxycoumarin pathway P. putida 86 was grown with quinoline. The FMN-containing enzyme xenobiotic reductase A (XenA) was isolated and analysed for its reactivity with intermediates of the 8-hydroxycoumarin pathway. XenA catalyses the NADPH-dependent reduction of 8-hydroxycoumarin and coumarin to produce 8-hydroxy-3,4-dihydrocoumarin and 3,4-dihydrocoumarin, respectively. Crystallographic analysis of XenA alone and in complex with the two substrates revealed insights into the mechanism. XenA shows a dimeric arrangement of two (beta/alpha)(8) barrel domains each binding one FMN cofactor. High resolution crystal structures of complexes with 8-hydroxycoumarin and coumarin show different modes of binding for these molecules in the active site. While coumarin is ideally positioned for hydride transfer from N-5 of the isoalloxazine ring to C-4 of coumarin, 8-hydroxycoumarin forms a non-productive complex with oxidised XenA. Orientation of 8-hydroxycoumarin in the active site appears to be dependent on the electronic state of the flavin. We postulate that XenA catalyses the last step of the 8-hydroxycoumarin pathway before the heterocyclic ring is hydrolysed to yield 3-(2,3-dihydroxyphenyl)-propionic acid. As XenA is also found in P. putida strains unable to degrade quinoline, it appears to have more than one physiological function and is an example of how enzymes with low substrate specificity can help to explain the variety of degradation pathways possible. 相似文献
4.
《Critical reviews in biotechnology》2012,32(1):83-98
AbstractThermostability is considered to be an important parameter to measure the feasibility of enzymes for industrial applications. Generally, higher thermostability makes an enzyme more competitive and desirable in industry. However, most natural enzymes show poor thermostability, which restricts their application. Protein structure modification is a desirable method to improve enzyme properties. In recent years, tremendous progress has been achieved in protein thermostability engineering. In this review, we provide a systemic overview on the approaches of protein structure modification for the improvement of enzyme thermostability during the last decade. Structure modification approaches, including the introduction of non-covalent interactions and covalent bonds, increase of proline and/or decrease in glycine, reinforcement of subunit–subunit interactions, introduction of glycosylation sites, truncation and cyclization have been highlighted. 相似文献
5.
Kamondi S Szilágyi A Barna L Závodszky P 《Biochemical and biophysical research communications》2008,374(4):725-730
A possible approach to generate enzymes with an engineered temperature optimum is to create chimeras of homologous enzymes with different temperature optima. We tested this approach using two family-10 xylanases from Thermotoga maritima: the thermophilic xylanase A catalytic domain (TmxAcat, Topt = 68 °C), and the hyperthermophilic xylanase B (TmxB, Topt = 102 °C). Twenty-one different chimeric constructs were created by mimicking family shuffling in a rational manner. The measured temperature optima of the 16 enzymatically active chimeras do not monotonically increase with the percentage of residues coming from TmxB. Only four chimeras had a higher temperature optimum than TmxAcat, the most stable variant (Topt = 80 °C) being the one in which both terminal segments came from TmxB. Further analysis suggests that the interaction between the N- and C-terminal segments has a disproportionately high contribution to the overall thermostability. The results may be generalizable to other enzymes where the N- and C-termini are in contact. 相似文献
6.
Gabriela Irazoqui Cecilia Giacomini Francisco Batista-Viera Beatriz M. Brena 《Journal of Molecular Catalysis .B, Enzymatic》2007,46(1-4):43-51
β-Galactosidases from Escherichia coli, Kluyveromyces lactis and Aspergillus oryzae were used to characterize the potential for enzyme stabilization of a two-step strategy: (i) immobilization on glutaraldehyde-agarose (Glut90), (ii) subsequent generation of a hydrophilic nano-environment by reaction with polyaldehyde-dextran polymer (Glut90-Pal), followed by polyamine-dextran polymer (Glut90-Pal-Pam). The derivatives were characterized by kinetics parameters, co-solvent (ethanol and acetone) and temperature stability. Hydrophilization achieved important co-solvent stabilization in all cases. One of the most remarkable results obtained was a 25-fold increase in the half-life of the A. oryzae Glut90-Pal-Pam derivative in 50% (v/v) acetone. Stabilization achieved in very drastic co-solvent concentrations is directly related to the hydrophilization of the nano-environment. The KM values show that the hydrophilic shell appears to behave as an open structure and may create a “partition effect” that protects the enzymes from denaturation. These results show the potential of hydrophilization for building up additional stabilization of immobilized enzymes which would make possible the development of industrial applications. 相似文献
7.
目的:通过对疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计,获得高酶活与耐高温的脂肪酶品种,为脂肪酶在饲料、油脂加工和生物柴油等领域的应用奠定基础.方法:对脂肪酶典型结构域lid和loop区域的系统发育分析,找到候选的位点,理性设计并通过实验验证,获得脂肪酶活性和耐高温特性显著提高的... 相似文献
8.
The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease 总被引:1,自引:0,他引:1
Thermophilic WF146 protease possesses four surface loop insertions and a disulfide bond, resembling its psychrophilic (subtilisins S41 and S39) and mesophilic (subtilisins SSII and sphericase) homologs. Deletion of the insertion 3 (positions 193-197) or insertion 4 (positions 210-221) of WF146 protease resulted in a significant decrease of the enzyme stability. In addition, substitution of the residues Pro211 and Ala212 or residue Glu221 which localized in the vicinity of a Ca(2+) binding site of the enzyme by the corresponding residues in subtilisin S41 remarkably reduced the half-life of the enzyme at 70 degrees C, suggesting that the three residues contributed to the thermostability of the enzyme, probably by enhancing the affinity of enzyme to Ca(2+). In the presence of dithiothreitol, the WF146 protease suffered excessive autolysis, indicating that the Cys52-Cys65 disulfide bond played a critical role in stabilizing the WF146 protease against autolysis. The autolytic cleavage sites of the WF146 protease were identified to locate between residues Asn63-Gly64 and Cys65-Ala66 by N-terminal amino acid analysis of the autolytic product. It was noticed that the effect of the autolytic cleavage at Asn63-Gly64 could be compensated by the disulfide bond Cys52-Cys65 under non-reducing condition, and the disulfide bond cross-linked autolytic product remained active. The apparent stabilization effect of the disulfide bond Cys52-Cys65 in the WF146 protease might provide a rational basis for improving the stability of subtilase against autolysis by protein engineering. 相似文献
9.
The troponin (Tn) is a ternary complex consisting of three subunits TnC, TnI and TnT; molecular disruption of the Tn complex has been recognized as an attractive strategy against neuropathic pain. Here, a self-inhibitory peptide is stripped from the switch region of TnI interaction interface with TnC, which is considered as a lead molecular entity and then used to generate potential peptide disruptors of TnC–TnI interaction based on a rational molecular design protocol. The region is a helical peptide segment capped by N- and C-terminal disorders. Molecular dynamics simulation and binding free energy analysis suggests that the switch peptide can interact with TnC in a structurally and energetically independent manner. Terminal truncation of the peptide results in a number of potent TnC binders with considerably simplified structure and moderately decreased activity relative to the native switch. We also employ fluorescence polarization assays to substantiate the computational findings; it is found that the rationally designed peptides exhibit moderate or high affinity to TnC with dissociation constants KD at micromolar level. 相似文献
10.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(3):161-173
AbstractTrypanothione reductase, the enzyme which in trypanosomal and leishmanial parasites catalyses the reduction of trypanothione disulphide to the redox-protective dithiol and has been identified as a potential target for rational antiparasite drug design, has been found to be strongly inhibited by tricyclic compounds containing the saturated dibenzazepine (imipramine) nucleus, with Ki values in the low micromolar range. This drug lead structure was designed by molecular graphics analysis of a three-dimensional homology model, focussing on the active-site. Inhibition studies were carried out to determine the effect of inhibitor structure on the inhibitory strength towards recombinant trypanothione reductase from Trypanosoma cruzi Hansch analysis showed that inhibitory strength depended on terms in 2 and s`m indicating dependence on both lipophilicity and inductive effect for ring-substituted analogues of imipramine. The side-chain ω-aminoalkyl chain had to be longer than 2-carbon units for inhibition. The effect on inhibition strength of the substituent at the ω-amino position on the side-chain of the central ring nitrogen atom depended markedly on the detailed substitution pattern of the rest of the molecule. This provides kinetic evidence studies of multiple binding modes within a single, blanket binding site for the inhibitor with the tricyclic ring system in the general region of the hydrophobic pocket lined by Trp21, Tyr110, Met113 and Phe114. This aspect of the structural sensitivity of the precise active-site triangulation adopted by the inhibitor is probably a function of the use of hydrophobic interactions of low directional specificity in this pocket combined with an electrostatianchoring by the ω-N+HMe2 function of the inhibitor, presumably with a glutamate sidethain, such as Glu-18, Glu-466prime; and/or Glu-467prime;. 相似文献
11.
《MABS-AUSTIN》2013,5(6):1058-1071
Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability. 相似文献
12.
Andreas Lehmann Josephine H F Wixted Maxim V Shapovalov Heinrich Roder Roland L Dunbrack Jr. Matthew K Robinson 《MABS-AUSTIN》2015,7(6):1058-1071
Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability. 相似文献
13.
This paper examined the effect of several pyridinium and imidazolium-based ionic liquids (ILs) on the protease stability in aqueous solutions. In general, the enzyme was found quite active at low concentrations of hydrophilic ILs. In aqueous environment, the enzyme was stabilized by the kosmotropic anions (such as CF3COO- and CH3COO-) and chaotropic cations (such as [BuPy]+ and [EMIM]+), but was destabilized by chaotropic anions (such as tosylate and BF4-) and kosmotropic cations (such as [BMIM]+). 相似文献
14.
Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase
Mammalian amylases harbor a flexible, glycine-rich loop 304GHGAGGA(310), which becomes ordered upon oligosaccharide binding and moves in toward the substrate. In order to probe the role of this loop in catalysis, a deletion mutant lacking residues 306-310 (Delta306) was generated. Kinetic studies showed that Delta306 exhibited: (1) a reduction (>200-fold) in the specific activity using starch as a substrate; (2) a reduction in k(cat) for maltopentaose and maltoheptaose as substrates; and (3) a twofold increase in K(m) (maltopentaose as substrate) compared to the wild-type (rHSAmy). More cleavage sites were observed for the mutant than for rHSAmy, suggesting that the mutant exhibits additional productive binding modes. Further insight into its role is obtained from the crystal structures of the two enzymes soaked with acarbose, a transition-state analog. Both enzymes modify acarbose upon binding through hydrolysis, condensation or transglycosylation reactions. Electron density corresponding to six and seven fully occupied subsites in the active site of rHSAmy and Delta306, respectively, were observed. Comparison of the crystal structures showed that: (1) the hydrophobic cover provided by the mobile loop for the subsites at the reducing end of the rHSAmy complex is notably absent in the mutant; (2) minimal changes in the protein-ligand interactions around subsites S1 and S1', where the cleavage would occur; (3) a well-positioned water molecule in the mutant provides a hydrogen bond interaction similar to that provided by the His305 in rHSAmy complex; (4) the active site-bound oligosaccharides exhibit minimal conformational differences between the two enzymes. Collectively, while the kinetic data suggest that the mobile loop may be involved in assisting the catalysis during the transition state, crystallographic data suggest that the loop may play a role in the release of the product(s) from the active site. 相似文献
15.
Phenylacetaldehyde reductase (PAR) from Rhodococcus sp. ST-10 is useful for chiral alcohol production because of its broad substrate specificity and high stereoselectivity.
The conversion of ketones into alcohols by PAR requires the coenzyme NADH. PAR can regenerate NADH by oxidizing additional
alcohols, especially 2-propanol. However, substrate conversion by wild-type PAR is suppressed in concentrated 2-propanol.
Previously, we developed the Sar268 mutant of PAR, which can convert several substrates in the presence of concentrated 2-propanol.
In this paper, further mutational engineering of Sar268 was performed to achieve higher process yield. Each of nine amino
acid positions that had been examined for generating Sar268 was subjected to saturation mutagenesis. Two novel substitutions
at the 42nd amino acid position increased m-chlorophenacyl chloride (m-CPC) conversion. Moreover, several nucleotide substitutions identified from libraries of random mutations around the start
codon also improved the PAR activity. E. coli cells harboring plasmid pHAR1, which has the integrated sequence of the top clones from the above selections, provided greater
conversion of m-CPC and ethyl 4-chloro-3-oxobutanoate than the Sar268 mutant, with very high optical purity of products. This mutant is a
promising novel biocatalyst for efficient chiral alcohol production. 相似文献
16.
Rapid modulation of nitrate reductase in leaves and roots: Indirect evidence for the involvement of protein phosphorylation/dephosphorylation 总被引:2,自引:0,他引:2
Nitrate reductase activity (NRA; NADH-nitrate reductase, E. C. 1.6.6.1) has been measured in extracts from leaves of spinach ( Spinacia oleracea L.) in response to rapid changes in illumination, or supply of CO2 or oxygen. Measured in buffers containing magnesium, NRA from leaves decreased in the dark and increased again upon illumination. It decreased also, when CO2 was removed in continuous light, and was reactivated when CO2 was added. Nitrate reductase (NR) from roots of pea ( Pisum sativum L.) was also rapidly modulated in vivo. It increased under anaerobiosis and decreased in air or pure oxygen. The half time for inactivation or reactivation in roots and leaves was 5 to 30 min.
When spinach leaves were harvested during a normal day/night cycle, extractable NRA was low during the night, and high during daytime. However, at any point of the diurnal cycle, NR could be brought to a similar maximum activity by preincubation of the desalted leaf extract with AMP and/or EDTA. Thus, the observed diurnal changes appeared to be mainly a consequence of enzyme modulation, not of protein turnover. In vivo, the reactivation of the inactivated enzyme from both leaves and roots was prevented by okadaic acid, and inhibitor of certain protein phosphatases. Artificial lowering of the ATP-levels in leaf or root tissues by anaerobiosis (dark), mannose or the uncoupler carbonyl cyanide m -chlorophenyl hydrazon (CCCP), always brought about full activation of NR.
By preincubating crude leaf or root extracts with MgATP, NR was inactivated in vitro. Partial purification from spinach leaves of two enzymes with molecular masses in the 67 kD and 100 kD range, respectively, is reported. Both participate in the ATP-dependent inactivation of NR.
Alltogether these data indicate that NR can be rapidly modulated by reversible protein phosphorylation/dephosphorylation, both in shoots and in roots. 相似文献
When spinach leaves were harvested during a normal day/night cycle, extractable NRA was low during the night, and high during daytime. However, at any point of the diurnal cycle, NR could be brought to a similar maximum activity by preincubation of the desalted leaf extract with AMP and/or EDTA. Thus, the observed diurnal changes appeared to be mainly a consequence of enzyme modulation, not of protein turnover. In vivo, the reactivation of the inactivated enzyme from both leaves and roots was prevented by okadaic acid, and inhibitor of certain protein phosphatases. Artificial lowering of the ATP-levels in leaf or root tissues by anaerobiosis (dark), mannose or the uncoupler carbonyl cyanide m -chlorophenyl hydrazon (CCCP), always brought about full activation of NR.
By preincubating crude leaf or root extracts with MgATP, NR was inactivated in vitro. Partial purification from spinach leaves of two enzymes with molecular masses in the 67 kD and 100 kD range, respectively, is reported. Both participate in the ATP-dependent inactivation of NR.
Alltogether these data indicate that NR can be rapidly modulated by reversible protein phosphorylation/dephosphorylation, both in shoots and in roots. 相似文献
17.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase. A comparison of the modulation in vitro by phosphorylation and dephosphorylation to modulation of enzyme activity by feeding cholesterol- or cholestyramine-supplemented diets
下载免费PDF全文

Konstantinos A. Mitropoulos Brian L. Knight Bernard E. A. Reeves 《The Biochemical journal》1980,185(2):435-441
The activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (hydroxymethylglutaryl-CoA reductase) was considerably inhibited during incubation with ATP+Mg2+. The inactivated enzyme was reactivated on further incubation with partially purified cytosolic phosphoprotein phosphatase. The inactivation was associated with a decrease in the apparent Km of the reductase for hydroxymethylglutaryl-CoA, and this was reversed on reactivation. The slight increase in activity observed during incubation of microsomal fraction without ATP was not associated with a change in apparent Km and, unlike the effect of the phosphatase, was not inhibited by NaF. Liver microsomal fraction from rats given cholesterol exhibited a low activity of hydroxymethylglutaryl-CoA reductase with a low apparent Km for hydroxymethylglutaryl-CoA. Mícrosomal fraction from rats fed cholestyramine exhibited a high activity with a high Km. To discover whether these changes had resulted from phosphorylation and dephosphorylation of the reductase, microsomal fraction from rats fed the supplemented diets and the standard diet were inactivated with ATP and reactivated with phosphoprotein phosphatase. Inactivation reduced the maximal activity of the reductase in each microsomal preparation and also reduced the apparent Km for hydroxymethylglutaryl-CoA. There was no difference between the preparations in the degree of inactivation produced by ATP. Treatment with phosphatase restored both the maximal activity and the apparent Km of each preparation, but never significantly increased the activity above that observed with untreated microsomal fraction. It is concluded that hydroxymethylglutaryl-CoA reductase in microsomal fraction prepared by standard procedures is almost entirely in the dephosphorylated form, and that the difference in kinetic properties in untreated microsomal fraction from rats fed the three diets cannot be explained by differences in the degree of phosphorylation of the enzyme. 相似文献
18.
Shim YH Bae SH Kim JH Kim KR Kim CJ Paik YK 《Biochemical and biophysical research communications》2004,315(1):219-223
Defects in cholesterol biosynthesis genes are recognized as a leading cause for holoprosencephaly (HPE). Previous reports suggest that mutations of human 7-dehydrocholesterol reductase (Dhcr7), which catalyzes the final step of cholesterol biosynthesis, may cause HPE [Clin. Genet. 53 (1998) 155]. To determine whether Dhcr7 mutations are involved in HPE pathogenesis, we analyzed the sequence of exon 9, which contains both a catalytic domain and a mutational hot spot. We examined 36 prematurely terminated fetuses with HPE at their gestation ages in the range from 21 to 33 weeks by single strand conformation polymorphism analysis and DNA sequencing. A novel missense mutation was identified: G344D. Dhcr7 enzyme assays using overexpressed recombinant mutant proteins revealed altered enzyme activity. Mutant G344D harbored less than 50% of enzyme activity compared with the control. Two previously reported mutations, R404C and G410S, abolished enzyme activity. These results suggest that mutation of the Dhcr7 gene is involved in HPE pathogenesis. 相似文献
19.
Human interleukin-6 is involved in the maintenance and progression of several diseases such as multiple myeloma (MM), rheumatoid arthritis, or osteoporosis. Our previous work demonstrated that an interleukin-6 antagonist peptide (named PT) possessed potential bioactivity to antagonize the function of hIL-6 and could efficiently induce the growth arrest and apoptosis of XG-7 and M1 cells in a dose-dependent manner. In this study, the theoretical interaction of the peptide PT with its receptor was analyzed further more with molecular docking and molecular dynamics methods. The theoretical studies showed that PT possessed very high affinity to interleukin-6R and offered a practical means of imposing long-term blockade of interleukin-6 activity in vivo. According to the theoretical results, the biological evaluation of PT was researched on two different cells models with more sensitive approaches: (1) The antagonist activity of PT was studied on the interleukin-6 dependent MM cells (XG-7) cultured with interleukin-6. In the other interleukin-6 dependent MM cells (SKO-007), they survived themselves by auto/paracrine without the exogenous interleukin-6, and also could be antagonized by PT. The therapeutic value of PT only limited on the interleukin-6 dependent category in MM. (2) Myeloid leukemia M1 cells were induced for growth arrest and apoptosis in response to interleukin-6. The results supported our previous findings and showed that PT could be evaluated by protecting the cells from interleukin-6 induced apoptosis. In conclusion, PT could induce interleukin-6-dependent XG-7 and SKO-007 cells to apoptosis while inhibit interleukin-6-stimulated apoptosis in M1 cells. 相似文献
20.
Paulo Durão Isabel Bento André T. Fernandes Eduardo P. Melo Peter F. Lindley Lígia O. Martins 《Journal of biological inorganic chemistry》2006,11(4):514-526
Site-directed mutagenesis has been used to replace Met502 in CotA laccase by the residues leucine and phenylalanine. X-ray structural comparison of M502L and M502F mutants with the wild-type CotA shows that the geometry of the T1 copper site is maintained as well as the overall fold of the proteins. The replacement of the weak so-called axial ligand of the T1 site leads to an increase in the redox potential by approximately 100 mV relative to that of the wild-type enzyme (E 0=455 mV). However the M502L mutant exhibits a twofold to fourfold decrease in the k cat values for the all substrates tested and the catalytic activity in M502F is even more severely compromised; 10% activity and 0.15–0.05% for the non-phenolic substrates and for the phenolic substrates tested when compared with the wild-type enzyme. T1 copper depletion is a key event in the inactivation and thus it is a determinant of the thermodynamic stability of wild-type and mutant proteins. Whilst the unfolding of the tertiary structure in the wild-type enzyme is a two-state process displaying a midpoint at a guanidinium hydrochloride concentration of 4.6 M and a free-energy exchange in water of 10 kcal/mol, the unfolding for both mutant enzymes is clearly not a two-state process. At 1.9 M guanidinium hydrochloride, half of the molecules are in an intermediate conformation, only slightly less stable than the native state (approximately 1.4 kcal/mol). The T1 copper centre clearly plays a key role, from the structural, catalytic and stability viewpoints, in the regulation of CotA laccase activity. 相似文献