首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) are negative regulators of gene expression in eukaryotic organisms, whereas small interfering RNAs (siRNAs) guide host-cell defence against viruses, transposons and transgenes. A key issue in plant biology is whether miRNAs act only in cells in which they are formed, or if, like siRNAs, they also function after passive diffusion or active transportation into other cells. Recent reports show that miRNAs are indeed able to move between plant cells to direct developmental programming of gene expression. In both leaf and root development, miRNAs establish intercellular gradients of gene expression that are essential for cell and tissue differentiation. Gradients in gene expression also play crucial roles in animal development, and there is strong evidence for intercellular movement of miRNAs in animals. Thus, intercellular movement of miRNAs may be crucial to animal developmental biology as well as plants.  相似文献   

2.
MicroRNAs (miRNAs) are approximately 22-nt RNA molecules that typically bind to the 3' untranslated regions of target mRNAs and function to either induce mRNA degradation or repress translation. miRNAs have been shown to play important roles in the function of stem cells and cell lineage decisions in a variety of organisms, including humans. Planarians are bilaterally symmetric metazoans that have the unique ability to completely regenerate lost tissues or organs. This regenerative capacity is facilitated by a population of stem cells known as neoblasts. Planarians are therefore an excellent model system for studying many aspects of stem cell biology. Here we report the cloning and initial characterization of 71 miRNAs from the planarian Schmidtea mediterranea. While several of the S. mediterranea miRNAs are members of miRNA families identified in other species, we also identified a number of planarian-specific miRNAs. This work lays the foundation for functional studies aimed at addressing the role of these miRNAs in regeneration, cell lineage decisions, and basic stem cell biology.  相似文献   

3.
let-7 microRNA调控动物器官发育的研究进展   总被引:3,自引:0,他引:3  
微小RNA(microRNA,miRNA)是一类在进化上高度保守、长度约20~24 nt的小分子非编码RNA,能通过与靶基因3′非翻译区相结合从而抑制靶基因的翻译或降解靶基因。let-7 microRNA是发现较早的一类miRNA,最早在线虫中发现能调控细胞分裂的时序。此后大量证据表明,let-7参与动物多个器官发育的调控过程,并与人类疾病发生密切相关。该文综述了近年来let-7调控动物脑、神经及心肺系统等器官发育的研究成果,初步阐述了let-7调控动物器官发育可能的作用机制,以期为深入研究let-7的功能奠定基础。  相似文献   

4.
Muscling through the microRNA world   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
MicroRNAs in trees   总被引:1,自引:0,他引:1  
  相似文献   

7.
NK cells are innate immune lymphocytes important for early host defense against infectious pathogens and malignant transformation. MicroRNAs (miRNAs) are small RNA molecules that regulate a wide variety of cellular processes, typically by specific complementary targeting of the 3'UTR of mRNAs. The Dicer1 gene encodes a conserved enzyme essential for miRNA processing, and Dicer1 deficiency leads to a global defect in miRNA biogenesis. In this study, we report a mouse model of lymphocyte-restricted Dicer1 disruption to evaluate the role of Dicer1-dependent miRNAs in the development and function of NK cells. As expected, Dicer1-deficient NK cells had decreased total miRNA content. Furthermore, miRNA-deficient NK cells exhibited reduced survival and impaired maturation defined by cell surface phenotypic markers. However, Dicer1-deficient NK cells exhibited enhanced degranulation and IFN-γ production in vitro in response to cytokines, tumor target cells, and activating NK cell receptor ligation. Moreover, a similar phenotype of increased IFN-γ was evident during acute MCMV infection in vivo. miRs-15a/15b/16 were identified as abundant miRNAs in NK cells that directly target the murine IFN-γ 3'UTR, thereby providing a potential mechanism for enhanced IFN-γ production. These data suggest that the function of miRNAs in NK cell biology is complex, with an important role in NK cell development, survival, or homeostasis, while tempering peripheral NK cell activation. Further study of individual miRNAs in an NK cell specific fashion will provide insight into these complex miRNA regulatory effects in NK cell biology.  相似文献   

8.
microRNA-guided posttranscriptional gene regulation   总被引:4,自引:0,他引:4  
Chen PY  Meister G 《Biological chemistry》2005,386(12):1205-1218
  相似文献   

9.
MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase.  相似文献   

10.
Embryonic stem cell-specific MicroRNAs   总被引:31,自引:0,他引:31  
We have identified microRNAs (miRNAs) in undifferentiated and differentiated mouse embryonic stem (ES) cells. Some of these appear to be ES cell specific, have related sequences, and are encoded by genomic loci clustered within 2.2 kb of each other. Their expression is repressed as ES cells differentiate into embryoid bodies and is undetectable in adult mouse organs. In contrast, the levels of many previously described miRNAs remain constant or increase upon differentiation. Our results suggest that miRNAs may have a role in the maintenance of the pluripotent cell state and in the regulation of early mammalian development.  相似文献   

11.
Tumor angiogenesis facilitates tumor metastasis and allows malignant tissues to grow beyond a diffusion limited size. It is a complex process that requires endothelial cells to execute specific steps during different phases. miRNAs are small non-coding RNAs that act as molecular switches to redirect the expression profile of a cell. Evidence is emerging that miRNAs are important players in endothelial cell biology and tumor angiogenesis. In this review we summarize the available data of miRNA expression in the endothelium. In addition, we describe the current knowledge regarding the function of miRNAs in endothelial cell biology. Finally, we discuss the potential applications of miRNA based treatment strategies in angiostatic cancer therapy.  相似文献   

12.
MicroRNAs in skeletal and cardiac muscle development   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are a recently discovered class of small non-coding RNAs, which are approximately 22 nucleotides in length. miRNAs negatively regulate gene expression by translational repression and target mRNA degradation. It has become clear that miRNAs are involved in many biological processes, including development, differentiation, proliferation, and apoptosis. Interestingly, many miRNAs are expressed in a tissue-specific manner and several miRNAs are specifically expressed in cardiac and skeletal muscles. In this review, we focus on those miRNAs that have been shown to be involved in muscle development. Compelling evidences have demonstrated that muscle miRNAs play an important role in the regulation of muscle proliferation and differentiation processes. However, it appears that miRNAs are not essential for early myogenesis and muscle specification. Importantly, dysregulation of miRNAs has been linked to muscle-related diseases, such as cardiac hypertrophy. A mutation resulting in a gain-of-function miRNA target site in the myostatin gene leads to down regulation of the targeted protein in Texel sheep. miRNAs therefore are a new class of regulators of muscle biology and they might become novel therapeutic targets in muscle-related human diseases.  相似文献   

13.
14.
MicroRNA又称miRNA,是一类广泛存在于动植物体内、大小为21~25nt左右的内源性非编码单链小分子RNA。在植物体中,miRNA主要负责调控转录后基因的表达,在机体发育、生长和应答胁迫方面发挥着重要的调节作用。近年来,miRNA已成为分子生物学领域的研究热点。本文介绍了几种发现和研究miRNA的方法,重点阐述了生物信息学预测miRNA方法的流程和策略,并对各过程中采用的方法及信息学软件的优劣性进行比较和分析,为预测miRNA提供新的思路。  相似文献   

15.
16.
微小RNA(microRNA,miRNA)是一类长约22个核苷酸的RNA,在数量、序列、结构、表达和功能上具有多样性。目前,通过生物信息学手段和分子克隆方法,已发现了3518种miRNA,在控制细胞的生长发育、分化、凋亡等过程中发挥着十分重要的作用。最近研究发现疱疹病毒、多瘤病毒、逆转录病毒的某些病毒基因组也能够编码miRNA,这些miRNA在调控病毒基因自身表达以及病毒与宿主相互作用方面可能起重要的作用。某些病毒甚至能够利用宿主体内的miRNA调控其自身表达。找出病毒可能编码的miRNA,探索其对病毒感染、复制、表达的作用,有助于病毒分子生物学的研究,也会为研发防治病毒的新方法和新途径提供新的思路。  相似文献   

17.
Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.  相似文献   

18.
鼻咽癌(nasopharyngeal carcinoma,NPC)是一种多基因遗传性疾病,好发生于我国华南、东南亚及部分非洲地区。近年来随着分子生物学及其技术的迅速发展,人们对鼻咽癌发生、发展及其生物学行为的研究已进入基因水平。microRNA(miRNA)是一类广泛存在于动植物体内的非编码小RNA,主要参与基因转录后水平调控。随着对miRNA研究的深入,发现肿瘤的细胞分化障碍、增殖失控、细胞永生化与miRNA密切相关。人类肿瘤组织与正常细胞组织间的miRNA表达水平和类型存在明显差异,提示miRNA可能是一类新的参与肿瘤发生的重要分子。本文就鼻咽癌与miRNA相关的研究进展作一综述。  相似文献   

19.
20.
Nature presents plenty of examples of cellular behavior that determines the shape of an organ during development, such as epithelial polarity and cell division orientation. Little is known, however, about how organs regenerate or how cellular behavior affects regeneration. One of the most exciting aspects of regeneration biology is understanding how proliferation and patterning are coordinated, since it means that cells not only have to proliferate but also have to do so in an ordered manner so that organs are reconstructed proportionally. Drosophila wing imaginal discs and adult wings are models used in different approaches to investigate this issue; they have recently been used to reveal that, after localized cell death, neighboring cells change their cell division orientation toward the damaged zone. During this process, cell polarity and spindle orientation operate in coordination with cell proliferation to regenerate proper organ size and shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号