共查询到20条相似文献,搜索用时 15 毫秒
1.
It is necessary to decompose the intra-muscular EMG signal to extract motor unit action potential (MUAP) waveforms and firing times. Some algorithms were proposed in the literature to resolve superimposed MUAPs, including Peel-Off (PO), branch and bound (BB), genetic algorithm (GA), and particle swarm optimization (PSO). This study aimed to compare these algorithms in terms of overall accuracy and running time. Two sets of two-to-five MUAP templates (set1: a wide range of energies, and set2: a high degree of similarity) were used. Such templates were time-shifted, and white Gaussian noise was added. A total of 1000 superpositions were simulated for each template and were resolved using PO (also, POI: interpolated PO), BB, GA, and PSO algorithms. The generalized estimating equation was used to identify which method significantly outperformed, while the overall rank product was used for overall ranking. The rankings were PSO, BB, GA, PO, and POI in the first, and BB, PSO, GA, PO, POI in the second set. The overall ranking was BB, PSO, GA, PO, and POI in the entire dataset. Although the BB algorithm is generally fast, there are cases where the BB algorithm is too slow and it is thus not suitable for real-time applications. 相似文献
2.
《Journal of electromyography and kinesiology》2014,24(6):827-834
Studies have demonstrated that the electromyographic (EMG) amplitude versus submaximal isometric force relationship is relatively linear. The purpose of this investigation was to determine the minimum number of contractions required to study this relationship. Eighteen men (mean age = 23 years) performed isometric contractions of the leg extensors at 10–90% of the maximum voluntary contraction (MVC) in 10% increments while surface EMG signals were detected from the vastus lateralis and vastus medialis. Linear regression was used to determine the coefficient of determination, slope coefficient, and y-intercept for each muscle and force combination with successively higher levels included in the model (i.e., 10–30%, … 10–90% MVC). For the slope coefficients, there was a main effect for force combination (P < .001). The pairwise comparisons showed there was no difference from 10–60% through 10–90% MVC. For the y-intercepts, there were main effects for both muscle (vastus lateralis [4.3 μV RMS] > vastus medialis [−3.7 μV RMS]; P = .034) and force combination (P < .001), with similar values shown from 10–50% through 10–90% MVC. The linearity of the absolute EMG amplitude versus isometric force relationship for the vastus lateralis and vastus medialis suggests that investigators may exclude high force contractions from their testing protocol. 相似文献
3.
4.
The transient enlargement of the compound muscle action potential (M wave) after a conditioning contraction is referred to as potentiation. It has been recently shown that the potentiation of the first and second phases of a monopolar M wave differed drastically; namely, the first phase remained largely unchanged, whereas the second phase underwent a marked enlargement and shortening. This dissimilar potentiation of the first and second phases has been suggested to be attributed to a transient increase in conduction velocity after the contraction. Here, we present a series of simulations to test if changes in the timing variability between motor unit potentials (MUPs) can be responsible for the unequal potentiation (and shortening) of the first and the second M-wave phases. We found that an increase in the mean motor unit conduction velocity resulted in a marked enlargement and narrowing of both the first and second M-wave phases. The enlargement of the first phase caused by a global increase in motor unit conduction velocities was apparent even for the electrode located over the innervation zone and became more pronounced with increasing distance to the innervation zone, whereas the potentiation of the second phase was largely independent of electrode position. Our simulations indicate that it is unlikely that an increase in motor unit conduction velocities (accompanied or not by changes in their distribution) could account for the experimental observation that only the second phase of a monopolar M wave, but not the first, is enlarged after a brief contraction. However, the combination of an increase in the motor unit conduction velocities and a spreading of the motor unit activation times could potentially explain the asymmetric potentiation of the M-wave phases. 相似文献
5.
Sabrina S.M. Lee Allison S. Arnold Maria de Boef Miara Andrew A. Biewener James M. Wakeling 《Journal of biomechanics》2013
Hill-type models are commonly used to estimate muscle forces during human and animal movement—yet the accuracy of the forces estimated during walking, running, and other tasks remains largely unknown. Further, most Hill-type models assume a single contractile element, despite evidence that faster and slower motor units, which have different activation–deactivation dynamics, may be independently or collectively excited. This study evaluated a novel, two-element Hill-type model with “differential” activation of fast and slow contractile elements. Model performance was assessed using a comprehensive data set (including measures of EMG intensity, fascicle length, and tendon force) collected from the gastrocnemius muscles of goats during locomotor experiments. Muscle forces predicted by the new two-element model were compared to the forces estimated using traditional one-element models and to the forces measured in vivo using tendon buckle transducers. Overall, the two-element model resulted in the best predictions of in vivo gastrocnemius force. The coefficient of determination, r2, was up to 26.9% higher and the root mean square error, RMSE, was up to 37.4% lower for the two-element model than for the one-element models tested. All models captured salient features of the measured muscle force during walking, trotting, and galloping (r2=0.26–0.51), and all exhibited some errors (RMSE=9.63–32.2% of the maximum in vivo force). These comparisons provide important insight into the accuracy of Hill-type models. The results also show that incorporation of fast and slow contractile elements within muscle models can improve estimates of time-varying, whole muscle force during locomotor tasks. 相似文献
6.
Claudio Orizio Renza Perini Arsenio Veicsteinas 《European journal of applied physiology and occupational physiology》1989,58(5):528-533
The contracting muscle generates a low frequency sound detectable at the belly surface, ranging from 11 to 40 Hz. To study the relationship between the muscular sound and the intensity of the contraction a sound myogram (SMG) was recorded by a contact sensor from the biceps brachii of seven young healthy males performing 4-s isometric contractions from 10% to 100% of the maximal voluntary contraction (MVC), in 10% steps. Simultaneously, the electromyogram (EMG) was recorded as an index of muscle activity. SMG and EMG were integrated by conventional methods (iSMG and iEMG). The relationship between iSMG and iEMG vs MVC% is described by parabolic functions up to 80% and 100% MVC respectively. Beyond 80% MVC the iSMG decreases, being about half of its maximal value at 100% MVC. Our results indicate that the motor unit recruitment and firing rate affect the iSMG and iEMG in the same way up to 80% MVC. From 80% to 100% MVC the high motor units' discharge rate and the muscular stiffness together limit the pressure waves generated by the dimensional changes of the active fibres. The muscular sound seems to reflect the intramuscular visco-elastic characteristics and the motor unit activation pattern of a contracting muscle. 相似文献
7.
《Journal of electromyography and kinesiology》2014,24(1):18-24
IntroductionThe purpose of this study was to examine the relative and absolute between-day reliability of the motor unit number index (MUNIX).MethodsYoung, healthy adults (n = 19) attended two testing sessions separated by 4-weeks where their maximal pinch-grip strength, MUNIX, and motor unit size index (MUSIX) were assessed in the abductor pollicis brevis muscle. Reliability was assessed by intraclass correlation coefficients (ICC), coefficient of variation (CV) and limits of agreement (LOA).ResultsNo mean differences were observed for MUNIX or MUSIX. The CV for the MUNIX and MUSIX measures were between 13.5% and 17.5%. The ICC for both measures were moderate to moderately-high (0.73–0.76), The LOA for both indicated a homoscedastic relationship.DiscussionOur findings indicate moderate to moderately-high reliability for both MUNIX and MUSIX. Future work is needed to ensure both measures are reliable in other muscles and cohorts, and further investigations are required to examine the validity of MUNIX. 相似文献
8.
Rositsa Raikova Hristo Aladjov 《Computer methods in biomechanics and biomedical engineering》2013,16(3):181-196
A critical point in models of the human limbs when the aim is to investigate the motor control is the muscle model. More often the mechanical output of a muscle is considered as one musculotendon force that is a design variable in optimization tasks solved predominantly by static optimization. For dynamic conditions, the relationship between the developed force, the length and the contraction velocity of a muscle becomes important and rheological muscle models can be incorporated in the optimization tasks. Here the muscle activation can be a design variable as well. Recently a new muscle model was proposed [22]. A muscle is considered as a mixture of motor units (MUs) with different peculiarities and the muscle force is calculated as a sum of the MUs twitches. The aim of the paper is to compare these three ways for presenting the muscle force. Fast elbow flexion is investigated using a planar model with five muscles. It is concluded that the rheological models are suitable for calculation of the current maximal muscle forces that can be used as weight factors in the objective functions. The model based on MUs has many advantages for precise investigations of motor control. Such muscle presentation can explain the muscle co-contraction and the role of the fast and the slow MUs. The relationship between the MUs activation and the mechanical output is more clear and closer to the reality. 相似文献
9.
It remains unclear if the sizes of higher-threshold motor units (MU) are associated with muscular strength and power. Therefore, the purpose of this study was to examine sex-related differences in muscle cross-sectional area (mCSA), percent myosin heavy chain (%MHC) isoform expression, and the MU action potential amplitudes (MUAPAMPS)-recruitment threshold (RT) relationships of the vastus lateralis and isometric peak torque, isokinetic peak torque and mean power at 1.05 rad·s−1 of the leg extensors. Surface electromyographic decomposition techniques were used to quantify MUAPAMPS recorded during isometric muscle actions at 70% of maximal voluntary contractions and regressed against RTs with the slopes calculated. Ultrasound images were used to measure mCSA. Males had greater slopes from the MUAPAMP-RT relationship than the females (P < 0.05). The greater slopes likely reflected larger higher-threshold MUs for the males. The mCSAs and slopes from the relationships were strongly correlated with isometric and isokinetic peak torque and isokinetic mean power (r = 0.78–0.82), however, type I %MHC isoform was only moderately correlated with isometric peak torque (r = −0.54). The results indicated that sex-related differences in muscular strength and power were associated more so with the sizes of the higher-threshold MUs (slopes) and mCSA than MHC isoforms. The amount of cross-bridge activity within muscle fibers that comprise higher-threshold MUs may be the primary contributor to muscular strength and power rather than the contractile properties of the muscle. 相似文献
10.
The problem of estimating the numbers of motor units N in a muscle is embedded in a general stochastic model using the notion of thinning from point process theory. In the paper a new moment type estimator for the numbers of motor units in a muscle is denned, which is derived using random sums with independently thinned terms. Asymptotic normality of the estimator is shown and its practical value is demonstrated with bootstrap and approximative confidence intervals for a data set from a 31-year-old healthy right-handed, female volunteer. Moreover simulation results are presented and Monte-Carlo based quantiles, means, and variances are calculated for N in{300,600,1000}. 相似文献
11.
《Journal of electromyography and kinesiology》2014,24(2):240-245
We aimed to examine whether the influence of conditioning contraction intensity on the extent of postactivation potentiation (PAP) is muscle dependent. Eleven healthy males performed both thumb adduction and plantar flexion as a conditioning contraction. The conditioning contraction intensities were set at 20%, 40%, 60%, 80%, or 100% of the maximal voluntary isometric contraction (MVC).Before and after the conditioning contraction, twitch torque was measured for the respective joint to calculate the extent of PAP. In plantar flexion, the extent of PAP became significantly larger as the conditioning contraction intensity increased up to 80% MVC (p < 0.05). In contrast, the extent of PAP in thumb adduction increased significantly only up to 60% MVC (p < 0.05), but not at higher intensities.These results indicate that the influence of the conditioning contraction intensity on the extent of PAP is muscle dependent. Our results suggest that a conditioning contraction with submaximal intensity can sufficiently evoke sizable PAP in the muscle where most of muscle fibers are recruited at submaximal intensities, thereby attenuating muscle fatigue induced by the conditioning contraction. 相似文献
12.
Javier Rodriguez-Falces Francesco Negro Miriam Gonzalez-Izal Dario Farina 《Journal of electromyography and kinesiology》2013,23(4):766-777
This study analyses the spatial distribution of individual motor unit potentials (MUPs) over the skin surface and the influence of motor unit depth and recording configuration on this distribution. Multichannel surface (13 × 5 electrode grid) and intramuscular (wire electrodes inserted with needles of lengths 15 and 25 mm) electromyographic (EMG) signals were concurrently recorded with monopolar derivations from the biceps brachii muscle of 10 healthy subjects during 60-s isometric contractions at 20% of the maximum torque. Multichannel monopolar MUPs of the target motor unit were obtained by spike-triggered averaging of the surface EMG. Amplitude and frequency characteristics of monopolar and bipolar MUPs were calculated for locations along the fibers’ direction (longitudinal), and along the direction perpendicular (transverse) to the fibers. In the longitudinal direction, monopolar and bipolar MUPs exhibited marked amplitude changes that extended for 16–32 mm and 16–24 mm over the innervation and tendon zones, respectively. The variation of monopolar and bipolar MUP characteristics was not symmetrical about the innervation zone. Motor unit depth had a considerable influence on the relative longitudinal variation of amplitude for monopolar MUPs, but not for bipolar MUPs. The transverse extension of bipolar MUPs ranged between 24 and 32 mm, whereas that of monopolar MUPs ranged between 72 and 96 mm. The mean power spectral frequency of surface MUPs was highly dependent on the transverse electrode location but not on depth. This study provides a basis for the interpretation of the contribution of individual motor units to the interference surface EMG signal. 相似文献
13.
Peka Christova Andon Kossev 《European journal of applied physiology and occupational physiology》1998,77(4):379-387
Changes accompanying long-lasting intermittent muscle contractions (30%–50% of the maximal) were investigated by tracing
the activity of 38 motor units (MU) of the human biceps brachii muscle recorded from fine-wire branched electrodes. The motor
task was a continuous repetition of ramp-and-hold cycles of isometric flexion contractions. During ramp-up phases a significant
decline in recruitment thresholds was found with no changes in the discharge pattern. During ramp-down phases the unchanged
mean value of derecruitment thresholds during the task was accompanied by increased duration of the last two interspike intervals
(ISI). These findings would suggest that during fatigue development the main compensatory mechanism during ramp-up contractions
is space coding while for ramp-down contractions it is rate coding. During the steady-state phases the mean value of ISI,
as well as the firing variability, had increased by the end of the task in most of the MU investigated . In addition 17 recruited
MU were also investigated. These units revealed a lower initial discharge rate and a faster decrease in the mean discharge
rate with the development of fatigue. The gradual reduction of the recruitment threshold of already active MU and the recruitment
of new units demonstrated an increased excitability of the motorneuron pool during fatigue. A typical recruitment pattern
(a first short ISI followed by a long one) was observed during ramp-up contractions in units active from the very beginning
of the task, as well as during sustained contractions at the onset of the stable discharge of the additionally recruited MU.
Accepted: 23 September 1997 相似文献
14.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals. 相似文献
15.
《Journal of electromyography and kinesiology》2014,24(6):910-916
ObjectiveTo evaluate the effect of upper motor neuron damage upon motor units’ function by means of two separate and supplementary electrophysiological methods.MethodsThe abductor digiti minimi muscle of the non-paretic and the paretic side was studied in forty-six stroke patients with (a) motor unit number estimation (MUNE) – adapted multiple point stimulation method and (b) computerized quantitative needle electromyography (EMG) assessing the configuration of voluntary recruited motor unit potentials. Main outcome comparisons were focused on differences between non-paretic and paretic side.ResultsOn the affected hands mean MUNE value was significantly lower and mean area of the surface recorded single motor unit potentials was significantly larger than the corresponding ones on the non-paretic hands. EMG findings did not reveal remarkable differences between the two sides. Neither severity nor chronicity of stroke was related to MUNE or EMG parameters.DiscussionMUNE results, which suggested reduced motor unit numbers in stroke patients, in conjunction with the normal EMG features in these same muscles has given rise to different interpretations. In a clinical setting, reinnervation type changes in the EMG similar to that occurring in neuronopathies or axonal neuropathies should not be expected in muscles with central neurogenic lesion. 相似文献
16.
The aim of the paper is to create a model which enables to observe the mechanomyographic (MMG) wave generated during single motor unit contractions in a muscle, while the muscle is immersed in paraffin oil. The muscle model is described as a rheological membrane. Both the muscle and the medium models have been built by using Stiff-Finite-Element-Method (SFEM), which allows one to simulate the muscle surface displacement and the acoustic propagation of this effect in the oil. Such a modelling enables one to determine the impact of the rheological properties of the liquid environment on the shape of the MMG wave. In order to verify the model, the MMG signals and the contraction forces have been recorded in vivo from the medial gastrocnemius muscle of a rat. In these experiments single motor units were stimulated with various stimulation frequencies. A piezotransducer, immersed in paraffin oil, has been used to record the MMG signal recording. The signals recorded during individual twitches of the motor units have been used to estimate the parameters of the model. Subsequently, the model has been experimentally verified. The signals recorded in experiments during unfused and fused tetani have been compared with the simulated model responses in the analogous stimulation program. It has been observed that the MMG signals obtained with the proposed linear model have been consistent with the results of in vivo experiments. 相似文献
17.
Yukio Mano Yuuji Morita Ryuji Tamura Shigeru Morimoto Tetsuya Takayanagi Richard F Mayer 《Journal of electromyography and kinesiology》1993,3(4):245-250
Cortical and spinal root (C8-T1) magnetic stimulation evoked single motor unit potentials in the abductor pollicis brevis and abductor digiti minimi muscles in a patient with chronic motor neuron disease. This patient was unique in that there were few surviving motoneurons in these muscles making it possible to record single motor units. Central motor conduction time was within normal limits. Cortical mapping of motor evoked potentials (MEPs) was carried out using a twin magnetic coil stimulating over the motor cortex at intervals of 1 cm along the coronal axis and 1–2 cm along the sagittal axis. As the site of cortical stimulation was moved from the centre, the latency of the MEPs increased by 0.7–0.8 ms suggesting one synaptic delay. This study provides further data that magnetic stimulation of the human cortex indirectly activates pyramidal cells via interneurons. 相似文献
18.
This study aimed to investigate the motor unit firing property immediately after concentric or eccentric contraction exercise. Eighteen healthy men performed repetitive maximal isokinetic knee extension exercises with only concentric or eccentric contraction until they exerted less than 80% of the baseline strength. Before and after the fatiguing exercise, high-density surface electromyography of the vastus lateralis was recorded during submaximal ramp-up isometric contraction and individual motor units were identified. Only motor units that could be tracked before and after exercise were analyzed. Muscle cross-sectional area of the vastus lateralis was measured using ultrasound, and electrically evoked torque was recorded before and after the exercise. Sixty-five and fifty-three motor units were analyzed before and after the concentric and eccentric contractions, respectively. The results showed that motor units with moderate to high recruitment thresholds significantly decreased recruitment thresholds under both conditions, and the motor unit discharge rates significantly increased after concentric contraction compared to eccentric contraction. A greater muscle cross-sectional area was observed with concentric contraction. The evoked torque was significantly decreased under both conditions, but no difference between the conditions. These results suggest that fatiguing exercise with concentric contraction contributes to greater neural input to muscles and metabolic responses than eccentric contraction. 相似文献
19.
All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the \"statistical\" or the \"Poisson\" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units. 相似文献
20.
M. Petitjean B. Maton A. Fourment 《European journal of applied physiology and occupational physiology》1998,77(6):527-535
To study its summation principle, the phonomyogram (PMG) from the first interosseus dorsalis muscle was recorded in five
subjects during single twitches evoked by electrical stimulation over the motor point. By increasing the current pulse from
threshold to maximal intensity, PMG amplitude increased linearly with motor unit recruitment. The twitch amplitude-intensity
relationship was also linear. The PMG amplitude was therefore linearly related to the external force. For all these relationships
highly significant correlation coefficients were found. These relationships were interpreted as being a consequence of an
orderly recruitment, although, contrary to what happens during voluntary contraction, the largest and strongest motor units
were recruited before the smallest and weakest ones during axon electrical stimulation. The PMG onset always preceded twitch
onsets as indicated by latency measurements [mean 3.2 (SD 1.3) ms versus 11.5 (SD 3.9) ms, respectively]. Moreover, PMG and
twitch latencies may have been significantly reduced by recruitment, suggesting that orderly recruitment influenced both PMG
amplitude and occurrence. These results were interpreted as being the result of the summation of elementary PMG from every
contracting motor unit and the stiffness change of the muscle medium occurring with recruitment.
Accepted: 25 August 1997 相似文献