首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is to create a model for mapping the surface electromyogram (EMG) signals to the force that generated by human arm muscles. Because the parameters of each person's muscle are individual, the model of the muscle must have two characteristics: (1) The model must be adjustable for each subject. (2) The relationship between the input and output of model must be affected by the force-length and the force-velocity behaviors are proven through Hill's experiments. Hill's model is a kinematic mechanistic model with three elements, i.e. one contractile component and two nonlinear spring elements.In this research, fuzzy systems are applied to improve the muscle model. The advantages of using fuzzy system are as follows: they are robust to noise, they prove an adjustable nonlinear mapping, and are able to model the uncertainties of the muscle.Three fuzzy coefficients have been added to the relationships of force-length (active and passive) and force-velocity existing in Hill's model. Then, a genetic algorithm (GA) has been used as a biological search method that can adjust the parameters of the model in order to achieve the optimal possible fit.Finally, the accuracy of the fuzzy genetic implementation Hill-based muscle model (FGIHM) is invested as following: the FGIHM results have 12.4% RMS error (in worse case) in comparison to the experimental data recorded from three healthy male subjects. Moreover, the FGIHM active force-length relationship which is the key characteristics of muscles has been compared to virtual muscle (VM) and Zajac muscle model. The sensitivity of the FGIHM has been evaluated by adding a white noise with zero mean to the input and FGIHM has proved to have lower sensitivity to input noise than the traditional Hill's muscle model.  相似文献   

2.
Current electromyography (EMG)-driven musculoskeletal models are used to estimate joint moments measured from an individual?s extremities during dynamic movement with varying levels of accuracy. The main benefit is the underlying musculoskeletal dynamics is simulated as a function of realistic, subject-specific, neural-excitation patterns provided by the EMG data. The main disadvantage is surface EMG cannot provide information on deeply located muscles. Furthermore, EMG data may be affected by cross-talk, recording and post-processing artifacts that could adversely influence the EMG?s information content. This limits the EMG-driven model?s ability to calculate the multi-muscle dynamics and the resulting joint moments about multiple degrees of freedom. We present a hybrid neuromusculoskeletal model that combines calibration, subject-specificity, EMG-driven and static optimization methods together. In this, the joint moment tracking errors are minimized by balancing the information content extracted from the experimental EMG data and from that generated by a static optimization method. Using movement data from five healthy male subjects during walking and running we explored the hybrid model?s best configuration to minimally adjust recorded EMGs and predict missing EMGs while attaining the best tracking of joint moments. Minimally adjusted and predicted excitations substantially improved the experimental joint moment tracking accuracy than current EMG-driven models. The ability of the hybrid model to predict missing muscle EMGs was also examined. The proposed hybrid model enables muscle-driven simulations of human movement while enforcing physiological constraints on muscle excitation patterns. This might have important implications for studying pathological movement for which EMG recordings are limited.  相似文献   

3.
4.
The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies.  相似文献   

5.
A novel kinematics-based approach coupled with a non-linear finite element model was used to investigate the effect of changes in the load position and posture on muscle activity, internal loads and stability margin of the human spine in upright standing postures. In addition to 397 N gravity, external loads of 195 and 380 N were considered at different lever arms and heights. Muscle forces, internal loads and stability margin substantially increased as loads displaced anteriorly away from the body. Under same load magnitude and location, adopting a kyphotic posture as compared with a lordotic one increased muscle forces, internal loads and stability margin. An increase in the height of a load held at a fixed lever arm substantially diminished system stability thus requiring additional muscle activations to maintain the same margin of stability. Results suggest the importance of the load position and lumbar posture in spinal biomechanics during various manual material handling operations.  相似文献   

6.
BackgroundVarious studies have investigated scapulothoracic muscle activity and recruitment patterns in relation to shoulder complaints in different populations, but a consensus review is lacking.Hypothesis/purposeTo systematically review the state of the art regarding scapulothoracic muscle activity and recruitment timing in subjects with shoulder pain compared to pain free controls.Study designSystematic review.MethodsThe search for relevant articles was performed in Pubmed and Web of Science, including Web of Knowledge, using key words related to shoulder pain, scapulothoracic muscle activity or recruitment timing. Articles were included till November 2012. Case-control studies concerning the scapulothoracic region and muscle recruitment using electromyography (EMG) were included. Articles regarding rotator cuff muscles or neck-shoulder pathologies or studies handling a treatment outcome, were excluded. The methodological quality of the articles was assessed using appropriate risk of bias criteria for case-control studies.ResultsA total of 12 articles were included in the systematic review, containing patients with Shoulder Impingement Syndrome (SIS) or glenohumeral instability. In patients with SIS 3 out of 6 articles showed increased upper trapezius muscle (UT) activity, 3 out of 5 studies showed decreased lower trapezius muscle (LT) activity and 3 out of 5 articles showed decreased serratus anterior muscle (SA) activity. Patients with glenohumeral instability showed contradictory results on scapulothoracic muscle activity patterns. In both SIS and glenohumeral instability patients, no consensus was found on muscle recruitment timing.ConclusionPatients with SIS and glenohumeral instability display numerous variations in scapulothoracic muscle activity compared to healthy controls. In the SIS-group, the LT and SA muscle activity is decreased. In addition, the UT muscle activity is increased among the SIS patients, whereas no clear change is seen among patients with glenohumeral instability. Although the scapulothoracic muscle activity changed, no consensus could be made regarding muscle recruitment timing.  相似文献   

7.
An increased knee abduction angle during jump-landing has been identified as a risk factor for anterior cruciate ligament injuries. Activation of the hip abductors may decrease the knee abduction angle during jump-landing. The purpose of this study was to examine the effects of a resistance band on the internal hip abduction moment and gluteus medius activation during the pre-landing (100 ms before initial contact) and early-landing (100 ms after initial contact) phases of a jump–landing–jump task. Thirteen male and 15 female recreational athletes (age: 21.1±2.4 yr; mass: 73.8±14.6 kg; height: 1.76±0.1 m) participated in the study. Subjects performed jump–landing–jump tasks with or without a resistance band applied to their lower shanks. During the with-band condition, subjects were instructed to maintain their movement patterns as performing the jump-landing task without a resistance band. Lower extremity kinematics, kinetics, and gluteus medius electromyography (EMG) were collected. Applying the band increased the average hip abduction moment during pre-landing (p<0.001, Cohen?s d (d)=2.8) and early-landing (p<0.001, d=1.5), and the average gluteus medius EMG during pre-landing (p<0.001, d=1.0) and early-landing (p=0.003, d=0.55). Applying the band decreased the initial hip flexion angle (p=0.028, d=0.25), initial hip abduction angle (p<0.001, d=0.91), maximum knee flexion angle (p=0.046, d=0.17), and jump height (p=0.004, d=0.16). Applying a resistance band provides a potential strategy to train the strength and muscle activation for the gluteus medius during jump-landing. Additional instructions and feedback regarding hip abduction, hip flexion, and knee flexion may be required to minimize negative changes to other kinematic variables.  相似文献   

8.
This study examined the effect of body segment parameter (BSP) perturbations on joint moments calculated using an inverse dynamics procedure and muscle forces calculated using computed muscle control (CMC) during gait. BSP (i.e. segment mass, center of mass location (com) and inertia tensor) of the left thigh, shank and foot of a scaled musculoskeletal model were perturbed. These perturbations started from their nominal value and were adjusted to ±40% in steps of 10%, for both individual as well as combined perturbations in BSP. For all perturbations, an inverse dynamics procedure calculated the ankle, knee and hip moments based on an identical inverse kinematics solution. Furthermore, the effect of applying a residual reduction algorithm (RRA) was investigated. Muscle excitations and resulting muscle forces were calculated using CMC. The results show only a limited effect of an individual parameter perturbation on the calculated moments, where the largest effect is found when perturbing the shank com (MScom,shank, the ratio of absolute difference in torque and relative parameter perturbation, is maximally −7.81 N m for hip flexion moment). The additional influence of perturbing two parameters simultaneously is small (MSmass+com,thigh is maximally 15.2 N m for hip flexion moment). RRA made small changes to the model to increase the dynamic consistency of the simulation (after RRA MScom,shank is maximally 5.01 N m). CMC results show large differences in muscle forces when BSP are perturbed. These result from the underlying forward integration of the dynamic equations.  相似文献   

9.
10.
An EMG-driven muscle model for determining muscle force-time histories during gait is presented. The model, based on Hill's equation (1938), incorporates morphological data and accounts for changes in musculotendon length, velocity, and the level of muscle excitation for both concentric and eccentric contractions. Musculotendon kinematics were calculated using three-dimensional cinematography with a model of the musculoskeletal system. Muscle force-length-EMG relations were established from slow isokinetic calibrations. Walking muscle force-time histories were determined for two subjects. Joint moments calculated from the predicted muscle forces were compared with moments calculated using a linked segment, inverse dynamics approach. Moment curve correlations ranged from r = 0.72 to R = 0.97 and the root mean square (RMS) differences were from 10 to 20 Nm. Expressed as a relative RMS, the moment differences ranged from a low of 23% at the ankle to a high of 72% at the hip. No single reason for the differences between the two moment curves could be identified. Possible explanations discussed include the linear EMG-to-force assumption and how well the EMG-to-force calibration represented excitation for the whole muscle during gait, assumptions incorporated in the muscle modeling procedure, and errors inherent in validating joint moments predicted from the model to moments calculated using linked segment, inverse dynamics. The closeness with which the joint moment curves matched in the present study supports using the modeling approach proposed to determine muscle forces in gait.  相似文献   

11.
In the present work, a generic model for the prediction of moment-angle characteristics in individual human skeletal muscles is presented. The model's prediction is based on the equation M = V x Lo(-1)sigma c cos phi x d, where M, V, and Lo are the moment-generating potential of the muscle, the muscle volume and the optimal muscle fibre length, respectively, and sigma, phi and d are the stress-generating potential of the muscle fibres, their pennation angle and the tendon moment arm length, respectively, at any given joint angle. The input parameters V, Lo, sigma, phi and d can be measured or derived mechanistically. This eliminates the common problem of the necessity to estimate one or more of the input parameters in the model by fitting its outcome to experimental results often inappropriate for the function modelled. The model's output was validated by comparisons with the moment-angle characteristics of the gastrocnemius (GS) and tibialis anterior (TA) muscles in six men, determined experimentally using voluntary contractions at several combinations of ankle and knee joint angles for the GS muscle and electrical stimulation for the TA muscle. Although the model predicted realistically the pattern of moment-angle relationship in both muscles, it consistently overestimated the GS muscle M and consistently underestimated the TA muscle M, with the difference gradually increasing from dorsiflexion to plantarflexion in both cases. The average difference between predicted and measured M was 14% for the GS muscle and 10% for the TA muscle. Approximating the muscle fibres as a single sarcomere in both muscles and failing to achieve complete TA muscle activation by electrical stimulation may largely explain the differences between theory and experiment.  相似文献   

12.
The objective of this study was to investigate the relative contributions of superficial and deep ankle plantarflexors during repetitive submaximal isometric contractions using surface electromyography (SEMG) and positron emission tomography (PET). Myoelectric signals were obtained from twelve healthy volunteers (27.3 ± 4.2 yrs). A tracer ([18F]-FDG) was injected during the exercise and PET scanning was done immediately afterwards. The examined muscles included soleus (Sol), medial gastrocnemius (MG), lateral gastrocnemius (LG), and flexor hallucis longus (FHL). It was found that isometric maximal voluntary contraction (MVC) force, muscle glucose uptake (GU) rate, and SEMG of various plantarflexors were comparable bilaterally. In terms of %EMG MVC, FHL and MG displayed the highest activity (∼34%), while LG (∼21%) had the lowest activity. Cumulative SEMG from all parts of the triceps surae (TS) muscle accounted for ∼70% of the combined EMG signal of all four plantarflexors. As for GU, the highest quantity was observed in MG (2.4 ± 0.8 μmol * 100 g−1 * min−1), whereas FHL (1.8 ± 0.6 μmol * 100 g−1 * min−1) had the lowest uptake. Cumulative GU of TS constituted nearly 80% of the combined GU. The findings of this study provide valuable reference for studies where individual muscle contributions are estimated using models and simulations.  相似文献   

13.
A parametric model was developed to describe the relationship between muscle moment arm and joint angle. The model was applied to the dorsiflexor muscle group in mice, for which the moment arm was determined as a function of ankle angle. The moment arm was calculated from the torque measured about the ankle upon application of a known force along the line of action of the dorsiflexor muscle group. The dependence of the dorsiflexor moment arm on ankle angle was modeled as r=R sin(a+Δ), where r is the moment arm calculated from the measured torque and a is the joint angle. A least-squares curve fit yielded values for R, the maximum moment arm, and Δ, the angle at which the maximum moment arm occurs as offset from 90°. Parametric models were developed for two strains of mice, and no differences were found between the moment arms determined for each strain. Values for the maximum moment arm, R, for the two different strains were 0.99 and 1.14 mm, in agreement with the limited data available from the literature. While in some cases moment arm data may be better fitted by a polynomial, use of the parametric model provides a moment arm relationship with meaningful anatomical constants, allowing for the direct comparison of moment arm characteristics between different strains and species.  相似文献   

14.
The secretion of proteins labelled by incorporation of radioactive amino acids was studied in innervated and 10 to 13-day-denervated mouse skeletal muscle. The secretion of 3H-leucine-labelled proteins, expressed per mg muscle wet weight, increased after denervation, and the kinetics of the secretory process was also altered in denervated muscle. Separation of secreted 35S-methionine-labelled proteins by sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by autoradiography revealed some denervation-induced alterations in the pattern of secreted proteins. The secretion from both innervated and denervated muscle was highly temperature sensitive and was reversibly inhibited by brefeldin A, a drug that blocks forward membrane transport from the endoplasmic reticulum/Golgi apparatus. This drug was also found to inhibit the uptake of fluorescein isothiocyanate-labelled dextran in denervated muscle but had no effect on the endocytotic activity of innervated muscle. This lends support to the hypothesis that the increased endocytotic activity in denervated muscle is coupled to a high secretory activity.Abbreviations BF A Brefeldin A - dpm Disintegrations per minute - EDL extensor digitorum longus - FITC fluorescein isothiocyanate - LDH lactate dehydrogenase - SDS-P AGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

15.
Determination of the trunk maximum voluntary exertion moment capacity and associated internal spinal forces could serve in proper selection of workers for specific occupational task requirements, injury prevention and treatment outcome evaluations. Maximum isometric trunk exertion moments in flexion and extension along with surface EMG of select trunk muscles are measured in 12 asymptomatic subjects. Subsequently and under individualized measured harness-subject forces, kinematics and upper trunk gravity, an iterative kinematics-driven finite element model is used to compute muscle forces and spinal loads in 4 of these subjects. Different co-activity and intra-abdominal pressure levels are simulated. Results indicate significantly larger maximal resistant moments and spinal compression/shear forces in extension exertions than flexion exertions. The agonist trunk muscles reach their maximum force generation (saturation) to greater extent in extension exertions compared to flexion exertions. Local lumbar extensor muscles are highly active in extension exertions and generate most of the internal spinal forces. The maximum exertion attempts produce large spinal compression and shear loads that increase with the antagonist co-activity level but decrease with the intra-abdominal pressure. Intra-abdominal pressure decreases agonist muscle forces in extension exertions but generally increase them in flexion exertions.  相似文献   

16.
We develop a toy model for predicting the rate of amyloid formation from an unfolded polypeptide. The model assumes irreversible amyloid growth, employs a collision encounter scheme and uses a Gaussian chain approximation to describe the polypeptide sequence. A principal feature of the model is its dependence on a number of key sequence residues whose correct placement, geometric arrangement and orientation in relation to their interacting partners define the success, or otherwise, of the amyloid formation reaction. Although not realistic at the molecular level, the model captures some essential features of the system and is therefore useful from a heuristic standpoint. For the case of amyloid formation from an unstructured state, the model suggests that the major determinants of the rate of fibril formation are the length of the sequence separating the critical amino acids promoting amyloid formation and the positional placement of the critical residues within the sequence. Our findings suggest also that the sequence distance between the key interacting amino acid residues may play a role in defining the maximum width of a fibril and that the addition of non-interacting segments of long structure-less polypeptide chain to an amyloidogenic peptide may act to inhibit fibril formation. We discuss these findings with reference to the placement of critical sequence residues within the polypeptide chain, the design of polypeptides with lower amyloid formation propensities and the development of aggregation inhibitors as potential therapeutics for protein depositional disorders.  相似文献   

17.
The contractile properties of the tibial anterior (TA) of Wistar rats were measured by means of a multipurpose testing machine. The muscle was isolated from the connective tissues, preserving the proximal insertion. The distal tendon was transected and fixed to the machine actuator. The leg was inmobilised using a pin drilled through the femoral condyle. In this way the force response was studied in vivo at different constant lengths for some voltages and frequencies. Mathematical functions are proposed for adjusting the force-length, force-frequency and force-time relations. The model includes a novel formulation for the depression response during muscle tetanisation.  相似文献   

18.
19.
Vlag  D. P. 《Hydrobiologia》1992,(1):119-131
A wave model and a vertical silt model are developed for shallow lakes and both were applied to Lake Marken in the Netherlands. The results of the wave model serve as input for the silt model. The silt model calculates the suspended silt concentration at several depths at a certain location. The water column is divided in compartments and the suspended silt concentration can be divided into a maximum of seven fractions. It is also possible to divide the top layer of the lake bottom into 25 slices with different time-dependent soil-physical properties.The optimization procedure of the silt model showed the importance of knowledge of the soil-physical properties of the top layer of the bottom. In general, not much is known about this layer and Lake Marken is no exception. The calibrated silt model gave good results for 3 sites in Lake Marken.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号