首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
In biomechanical modeling of the shoulder, it is important to know the orientation of each bone in the shoulder girdle when estimating the loads on each musculoskeletal element. However, because of the soft tissue overlying the bones, it is difficult to accurately derive the orientation of the clavicle and scapula using surface markers during dynamic movement. The purpose of this study is to develop two regression models which predict the orientation of the clavicle and the scapula. The first regression model uses humerus orientation and individual factors such as age, gender, and anthropometry data as the predictors. The second regression model includes only the humerus orientation as the predictor. Thirty-eight participants performed 118 static postures covering the volume of the right hand reach. The orientation of the thorax, clavicle, scapula and humerus were measured with a motion tracking system. Regression analysis was performed on the Euler angles decomposed from the orientation of each bone from 26 randomly selected participants. The regression models were then validated with the remaining 12 participants. The results indicate that for the first model, the r2 of the predicted orientation of the clavicle and the scapula ranged between 0.31 and 0.65, and the RMSE obtained from the validation dataset ranged from 6.92° to 10.39°. For the second model, the r2 ranged between 0.19 and 0.57, and the RMSE obtained from the validation dataset ranged from 6.62° and 11.13°. The derived regression-based shoulder rhythm could be useful in future biomechanical modeling of the shoulder.  相似文献   

2.
Optimization combined with a musculoskeletal shoulder model has been used to estimate mechanical loading of musculoskeletal elements around the shoulder. Traditionally, the objective function is to minimize the summation of the total activities of the muscles with forces, moments, and stability constraints. Such an objective function, however, tends to neglect the antagonist muscle co-contraction. In this study, an objective function including an entropy term is proposed to address muscle co-contractions. A musculoskeletal shoulder model is developed to apply the proposed objective function. To find the optimal weight for the entropy term, an experiment was conducted. In the experiment, participants generated various 3-D shoulder moments in six shoulder postures. The surface EMG of 8 shoulder muscles was measured and compared with the predicted muscle activities based on the proposed objective function using Bhattacharyya distance and concordance ratio under different weight of the entropy term. The results show that a small weight of the entropy term can improve the predictability of the model in terms of muscle activities. Such a result suggests that the concept of entropy could be helpful for further understanding the mechanism of muscle co-contractions as well as developing a shoulder biomechanical model with greater validity.  相似文献   

3.
The movements of the humerus, the clavicle, and the scapula are not completely independent. The coupled pattern of movement of these bones is called the shoulder rhythm. To date, multiple studies have focused on providing regression-based 3-D shoulder rhythms, in which the orientations of the clavicle and the scapula are estimated by the orientation of the humerus. In this study, six existing regression-based shoulder rhythms were evaluated by an independent dataset in terms of their predictability. The datasets include the measured orientations of the humerus, the clavicle, and the scapula of 14 participants over 118 different upper arm postures. The predicted orientations of the clavicle and the scapula were derived from applying those regression-based shoulder rhythms to the humerus orientation. The results indicated that none of those regression-based shoulder rhythms provides consistently more accurate results than the others. For all the joint angles and all the shoulder rhythms, the RMSE are all greater than 5°. Among those shoulder rhythms, the scapula lateral/medial rotation has the strongest correlation between the predicted and the measured angles, while the other thoracoclavicular and thoracoscapular bone orientation angles only showed a weak to moderate correlation. Since the regression-based shoulder rhythm has been adopted for shoulder biomechanical models to estimate shoulder muscle activities and structure loads, there needs to be further investigation on how the predicted error from the shoulder rhythm affects the output of the biomechanical model.  相似文献   

4.
We have adjusted and validated models of the lines of action of six human shoulder muscles. Compared to other models of the shoulder mechanism (e.g., 9, 11, 17, 24) ours is greatly simplified in that the scapula and its many muscles are largely neglected, and the action of each of six broad muscles is summarized by a single line segment. The close correspondence between measured and predicted moment direction over a wide range of postures suggests that this latter simplification was reasonable. We found that assignment of two via points (one fixed to the origin and one fixed to the insertion) was adequate to represent the measured actions, and our sensitivity analysis highlights the importance of via point placement. Because our model predicts the action of each muscle over a very large range of arm postures, it should be useful for future investigations of the control of muscle forces.  相似文献   

5.
In this study, a new method is proposed to estimate the torque-vector directions of each shoulder muscle. The method is based on a multiple regression model that reconstructs shoulder torque, which is calculated from the hand force and posture, from the surface EMG of many muscles recorded simultaneously. The torque-vector directions of eleven shoulder muscles of four subjects were obtained at up to 30 different arm postures with this method. The mean confidence interval (p < 0.05) of the estimated torque-vector direction of each subject was 7.7-10.6 degrees. The correlation coefficient between the measured shoulder torque and reconstructed shoulder torque was between 0.76-0.84. The results for majority of the muscles were in accordance with previous studies, and reasonable from the viewpoint of anatomy. The torque-vector directions of a muscle, which are estimated with this method, have more of a functional meaning than a pure anatomical or mechanical one. These indicate the direction of the shoulder torque accompanying the muscle activation for a normal shoulder action that involves the cooperative contraction of many muscles.  相似文献   

6.
In the present study the validity of EMG based methods to estimate the net moment working at the lumbar spine was investigated. Eight subjects performed a series of static and dynamic tasks. EMG was recorded from 8 locations over the back muscles. At the same time force platform and kinematic data for a linked segment analysis were collected. The net moment at the lumbar spine was calculated from the latter data and compared to EMG based estimates of the same moment. These estimates were derived from a linear regression between the EMG amplitudes and the net moments obtained during static ramp calibrations. It appeared that calibration in several postures, covering the range occurring in the tasks studied, and in a posture in the middle of this range, yielded estimates of the group averaged 10th, 50th, and 90th percentile of the net moments which were within 10% of the real value. The explained variance obtained in the calibration procedure proved not to be a good indicator of the validity of the procedure.  相似文献   

7.
In the pediatric shoulder, injury and pathology can disrupt the muscle force balance, resulting in severe functional losses. As little data exists pertaining to in vivo pediatric shoulder muscle function, musculoskeletal data are crucially needed to advance the treatment of pediatric shoulder pathology/injury. Therefore, the purpose of this study was to develop a pediatric database of in vivo volumes for the major shoulder muscles and correlate these volumes with maximum isometric flexion/extension, internal/external rotation, and abduction/adduction joint moments. A methodology was developed to derive 3D shoulder muscle volumes and to divide the deltoid into sub-units with unique torque producing capabilities, based on segmentation of three-dimensional magnetic resonance images. Eleven typically developing children/adolescents (4F/7M, 12.0±3.2 years, 150.8±16.7 cm, 49.2±16.4 kg) participated. Correlation and regression analyses were used to evaluate the relationship between volume and maximum, voluntary, isometric joint torques. The deltoid demonstrated the largest (30.4±1.2%) and the supraspinatus the smallest (4.8±0.5%) percent of the total summed volume of all six muscles evaluated. The anterior and posterior deltoid sections were 43.4±3.9% and 56.6±3.9% of the total deltoid volume. The percent volumes were highly consistent across subjects. Individual muscle volumes demonstrated moderate-high correlations with torque values (0.70–0.94, p<0.001). This study presents a comprehensive database documenting normative pediatric shoulder muscle volume. Using these data a clear relationship between shoulder volume and the torques they produce was established in all three rotational degrees-of-freedom. This study furthers the understanding of shoulder muscle function and serves as a foundation for evaluating shoulder injury/pathology in the pediatric/adolescent population.  相似文献   

8.
In this study, a new method is proposed to estimate the torque-vector directions of each shoulder muscle. The method is based on a multiple regression model that reconstructs shoulder torque, which is calculated from the hand force and posture, from the surface EMG of many muscles recorded simultaneously. The torque-vector directions of eleven shoulder muscles of four subjects were obtained at up to 30 different arm postures with this method. The mean confidence interval ( p< 0.05) of the estimated torque-vector direction of each subject was 7.7-10.6 degrees. The correlation coefficient between the measured shoulder torque and reconstructed shoulder torque was between 0.76-0.84. The results for majority of the muscles were in accordance with previous studies, and reasonable from the viewpoint of anatomy. The torque-vector directions of a muscle, which are estimated with this method, have more of a functional meaning than a pure anatomical or mechanical one. These indicate the direction of the shoulder torque accompanying the muscle activation for a normal shoulder action that involves the cooperative contraction of many muscles.  相似文献   

9.
It is not clear whether the strength or endurance of thigh muscles (quadriceps and hamstring) is positively or negatively correlated with the adduction moment of osteoarthritic knees. This study therefore assessed the relationships between the strength and endurance of the quadriceps and hamstring muscles and adduction moment in osteoarthritic knees and evaluated predictors of the adduction moment. The study cohort comprised 35 patients with unilateral medial osteoarthritis and varus deformity who were candidates for open wedge osteotomy. The maximal torque (60°/sec) and total work (180°/sec) of the quadriceps and hamstring muscles and knee adduction moment were evaluated using an isokinetic testing device and gait analysis system. The total work of the quadriceps (r = 0.429, P = 0.037) and hamstring (r = 0.426, P = 0.045) muscles at 180°/sec each correlated with knee adduction moment. Preoperative varus deformity was positively correlated with adduction moment (r = 0.421, P = 0.041). Multiple linear regression analysis showed that quadriceps endurance at 180°/sec was the only factor independently associated with adduction moment (β = 0.790, P = 0.032). The adduction moment of osteoarthritic knees correlated with the endurance, but not the strength, of the quadriceps muscle. However, knee adduction moment did not correlate with the strength or endurance of the hamstring muscle.  相似文献   

10.
Momentary fatigue is an important variable in resistance training periodization programs. Although several studies have examined neuromuscular activity during single repetitions of resistance training, information is lacking in regard to neuromuscular fatigue indices throughout a full resistance training bout. The purpose of this study was to evaluate muscle activity during a shoulder resistance training bout with 15 repetitions maximum (RM) loadings in novice individuals. Twelve healthy sedentary women (age = 27-58 years; weight = 54-85 kg; height = 160-178 cm) were recruited for this study. Normalized electromyographic (nEMG) activity and median power frequency (MPF) of the upper, medial, and lower trapezius; the medial deltoid, infraspinatus, and serratus anterior was measured during 3 sets of 15RM during the exercises front raise, reverse flyes, shrugs, and lateral raise. For the majority of exercises, nEMG activity was high (>60% of maximal isometric contractions). From the first to the last repetition of each set nEMG-averaged for all muscles-increased 10. 0 ± 0.4% (p < 0.05) and MPF decreased -7.7 ± 0.5 Hz (p < 0.05). By contrast, nEMG activity and MPF were unchanged from the first to the third set (averaged for all muscles: 38.1 ± 23.6 vs. 47.6 ± 28.8% and 88.4 ± 21.3 vs. 82.1 ± 18.1 Hz, respectively). In conclusion, during a shoulder resistance training bout in novice individuals using 15RM loading muscle activity of the upper, medial, and lower trapezius, the medial deltoid, infraspinatus, and serratus anterior increased, and MPF decreased within each set-indicating momentary neuromuscular fatigue. By contrast, no such change was observed between the 3 sets. This indicates that momentary neuromuscular fatigue in shoulder resistance training is induced more efficiently within a set than between sets.  相似文献   

11.
This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.  相似文献   

12.
The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation–supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction.  相似文献   

13.
The purpose of the present study was to determine (1) if joint position sense (JPS) in subjects with shoulder stiffness (SS) differs from that in controls; (2) if, when JPS is reduced in SS, it is related to scapular muscular activities in the mid/end ranges of motion; and (3) if a person’s function is associated with his or her level of JPS. Eighteen subjects with unilateral SS and 18 controls were included. Each subject performed abduction by self-selecting an end/mid range position. The electromagnetic motion-capturing system collected kinematic data while surface electromyography collected muscle activities (upper trapezius, lower trapezius, and serratus anterior muscles). Subjects were asked to move the upper limb to the target position (end/mid range) accurately without visual guidance. Reduced JPS was observed in subjects with SS (2.7 degrees in mid range, p < 0.05). The JPS was enhanced by an increased scapula muscular activation level in the end range of motion (R = ?0.61 for SS and ?0.41 for controls) and by coordination among muscles’ activation in the mid-range of motion (R = ?0.87 for SS and R = ?0.53 for controls). Impaired JPS was also related to self-reported functional status (R = ?0.56) in subjects with SS. Shoulder JPS in subjects with chronic SS is impaired in comparison with controls. In the mid-range motion, the coordination of scapula muscular activation is related to shoulder JPS. Impaired JPS is also function-related in subjects with SS. These findings suggest that the coordination among scapula muscles’ activation were important to consider in the rehabilitation of patients with chronic SS.  相似文献   

14.
The aim was to investigate whether output and electromyogram (EMG) variables obtained from an isokinetic endurance test of the shoulder flexor muscles of 23 women with neck and shoulder problems in a car and truck industry correlated with improvement or worsening of complaints 1 year later. Each subject performed 100 maximal isokinetic shoulder forward flexions at 60° · s−1. Surface EMG of the trapezius, deltoid, biceps brachii and infraspinatus muscles and mechanical output (peak torque) were determined for each contraction. The EMG was used to determine mean frequency f mean and the ratio between the signal amplitudes of the EMG of the passive relaxation and active flexion parts of each contraction cycle (SAR). The subjects also rated the degree of fatigue they experienced throughout the test. The magnitude of the shift in f mean was correlated with whether improvement or worsening occurred for complaints in the neck and or shoulders; a significant relationship (r 2 = 0.44; P = 0.001) existed between the total frequency shift of the four muscles and the variables measuring improvement in complaints. In the multivariate predictions other f mean variables and perception of fatigue were also of significance. The present study would indicate that a high degree of f mean shift correlates with improvement in neck and shoulder complaints 1 year later. One possible reason could be that f mean reflects the muscle morphology and/or a pathological situation for the type-1 muscle fibres. Accepted: 27 May 1998  相似文献   

15.
Aquatic exercises are widely implemented into rehabilitation programs. However, both evaluating their mechanical demands on the musculoskeletal system and designing protocols to provide progressive loading are difficult tasks. This study reports for the first time shoulder joint kinetics and dynamics during underwater forward arm elevation performed at speeds ranging from 22.5 to 90°/s. Net joint moments projected onto anatomical axes of rotation, joint power, and joint work were calculated in 18 participants through a novel approach coupling numerical fluid flow simulations and inverse dynamics. Joint dynamics was revealed from the 3D angle between the joint moment and angular velocity vectors, identifying three main functions—propulsion, stabilization, and resistance. Speeds <30°/s necessitated little to no power at all, whereas peaks about 0.20 W⋅kg−1 were seen at 90°/s. As speed increased, peak moments were up to 61 × higher at 90 than at 22.5°/s, (1.82 ± 0.12%BW⋅AL vs 0.03 ± 0.01%BW⋅AL, P < 0.038). This was done at the expense of a substantial decrease in the joint moment contribution to joint stability though, which goes against the intuition that greater stabilization is required to protect the shoulder from increasing loads. Slow arm elevations (<30°/s) are advantageous for joint mobility gain at low mechanical solicitation, whereas the intensity at 90°/s is high enough to stimulate muscular endurance improvements. Simple predictive equations of shoulder mechanical loading are provided. They allow for easy design of progressive protocols, either for the postoperative shoulder or the conditioning of athlete targeting very specific intensity regions.  相似文献   

16.
An analysis of secondary shoulder motions (humeral rotation, humeral head anterior/posterior translation, scapular tipping, and scapular upward/downward rotation) in subjects with anterior/posterior shoulder tightness provides the opportunity to examine the role of tightness as a means of affecting shoulder motions. Subjects with shoulder tightness (anterior, n = 12; posterior, n = 12) elevated their arms in the scapular plane. Three replicated movements were performed to the maximum motions. Kinematics data were collected by FASTRAK 3D electromagnetic system. To determine if a significant difference of the secondary motions existed between anterior/posterior shoulder tightness, two-factor mixed ANOVA models with the repeated factor of elevation angle (five elevation angles) and the independent factor of group were calculated. The relationships between the self-reported functional scores (Flexilevel Scale of Shoulder Function, FLEX-SF) and abnormal shoulder kinematics were assessed. For humeral head anterior/posterior translation, the subjects with posterior tightness demonstrated anterior humeral head translation (10 mm, p = 0.019) compared to subjects with anterior tightness. The subjects with anterior tightness demonstrated less posterior tipping (2.2°, p = 0.045) compared to subjects with posterior tightness. The humeral anterior translation had moderate relationships with FLEX-SF scores (r = ?0.535) in subjects with posterior tightness. The scapular tipping had moderate relationships with FLEX-SF scores (r = 0.432) in subjects with anterior tightness. In conclusion, the secondary motions were different between subjects with anterior and posterior shoulder tightness. During arm elevation, less scapular posterior tipping and less posterior humeral head translation in subjects with anterior and posterior shoulder tightness, respectively, are significantly related to self-reported functional disability in these subjects.  相似文献   

17.
Understanding how individuals distribute mechanical demand imposed on their upper extremity during physically demanding activities provides meaningful insights to preserve function and mitigate detrimental mechanical loading of the shoulder. In this study, we hypothesized that parameterization of the shoulder net joint moment using four functional axes could characterize distribution tendencies about the shoulder during manual wheelchair propulsion and that regardless of demographics, a shoulder flexor dominant NJM distribution would be predominantly used by individuals with paraplegia (n = 130). Forces and kinematics of the upper extremity and trunk were quantified using motion capture and an instrumented wheel during steady state manual wheelchair propulsion at self-selected fast speeds on a stationary ergometer. The results indicate that parsing out the internal/external rotation component of the shoulder net joint moment about the upper arm and distributing the remainder across the three orthogonal axes of the torso was successful in identifying common shoulder net joint moment distribution techniques used across individuals with paraplegia during manual wheelchair propulsion. Distribution tendencies were predominantly flexor dominant across injury level, gender, time since injury, body mass index, and height demographics. The 4-axis parameterization of the shoulder NJM effectively differentiated moment distribution tendencies used by individuals during manual wheelchair propulsion using a functionally relevant representation of shoulder kinetics. Use of the four-axis parameterization of joint kinetics in future studies is expected to provide important insights that can advance knowledge, preserve function, and inform clinical decisions.  相似文献   

18.
The plantarflexor, hip extensor and hip flexor muscle groups contribute by their concentric action to generate most of the energy during level gait in healthy subjects. The goal of the present study was to determine, during the main energy generation phases, the relative demand of these three groups in 14 healthy subjects walking at four cadences (self-selected, 60, 80 and 120 steps/min). The muscular utilization ratio (MUR), that compares the net joint moment obtained during gait to the maximal potential moment (MPM) at each percentage of the gait cycle, was used to estimate the mechanical relative demand. The MPM values were obtained by regression equations developed from torque data measured with a Biodex dynamometric system. The results showed that the peak MURs increased with gait cadence. The peak values were not significantly different between sides for all cadences despite mean absolute lateral differences ranging from 7% to 10%. The mean peak MURs of both sides ranged from 51.3% to 62.6%, from 20.7% to 49.9% and from 14.9% to 42.5%, for the plantarflexors, hip flexors and hip extensors, respectively. Highly significant associations were found between the MURs and net moments (numerator of the MUR ratio), with Pearson coefficients (r) superior to 0.80 for all muscles groups. The association between the MURs and the maximal potential moments (denominator of MUR ratio) was lower (0.01相似文献   

19.
Upper limb morbidities are common amongst the breast cancer population (BCP) and have a direct impact on independence. Comparing muscle co-activation strategies between BCP and healthy populations may assist in identifying muscle dysfunction and promote clinical interpretation of dysfunction, which could direct preventative and therapeutic interventions. The purposes of this study were to define humeral rotation muscle co-activation of a BCP and to compare it with a previously defined co-activation relationship of a healthy population. Fifty BCP survivors performed 18 isometric internal and external rotation exertions at various postures and intensities. Surface and intramuscular electrodes recorded shoulder muscle activity. BCP co-activation was predicted at r2 = 0.77 during both exertion types. Humeral abduction angle and task intensity were important factors in the prediction of co-activation in both populations. Comparisons made between populations identified differing muscle strategies used by BCP to maintain postural control. Compared to healthy co-activation, the BCP demonstrated greater activation of internal (IR) and external rotator (ER) type muscles during their respective rotation type. The BCP demonstrated increased (⩾8.7%) activation of pectoralis major. This study has provided insight into how BCP muscles compensate during dysfunction. Continued advancement of this knowledge can provide more understanding of dysfunction, promote generation of evidence-based therapies, and can be useful in biomechanical modeling.  相似文献   

20.
Work related musculoskeletal disorders (WMSDs) are common among dentists and possibly caused by prolonged static load. The aim of this study was to assess the contraction pattern of neck and shoulder muscles of orthodontists in natural environments.Electromyographic (EMG) activity of right sternocleidomastoid and trapezius muscles were recorded by means of portable recorders in eight orthodontists during working conditions, and both active and resting non-working conditions. Recordings were analysed in terms of contraction episode (CE) count, amplitude, and duration.The sternocleidomastoid and trapezius muscles contracted about 40–70 times per hour in the natural environment. Their EMG activity pattern mainly consisted of short-lasting, low-amplitude CEs. The counts and amplitude of sternocleidomastoid CEs did not differ across vocational and non-vocational conditions. The number and amplitude of trapezius CEs were slightly but significantly higher during the vocational condition. There were highly significant (p < 0.001) differences in duration of CEs across conditions, with two to threefold increase in the average duration of trapezius muscle contractions found in the vocational setting.During orthodontic work, operators commonly hold muscular contractions for significantly longer periods than are encountered in non-vocational settings. This behaviour may be associated causally with the increases seen in WMSDs through proposed pathophysiological mechanisms occurring at the motor unit level. Our findings may also be valid for other occupations characterised by seated static postures with precision hand and wrist movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号