首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Knowledge of the muscle activation and the development of muscle fatigue may provide more inside in the effects of long-term driving in the occurrence of health problems in the neck/shoulder/back area. The basic assumption behind fatigue detection with electromyography (EMG) is an increase in the EMG amplitude and a decrease of the mean frequency (MF). This study aimed at checking this assumption in monotonous task performance with low level activity during car driving. Surface electromyography was captured from left and right trapezius and deltoid muscles, during a repetitive, non-continuous, driving task (gearing and steering) and the active parts were separated from the non-active parts. Muscle stiffness was reported by more than half of the subjects after a 1 h drive. Only for the active parts a significant decrease of the MF was seen. But also the EMG amplitude decreased significantly. Two possible mechanisms are posted in literature for this finding: no extra recruitment of motor units (MU) and potentiation of muscle fibers. Literature also hypothesizes that low-force occupational work engages only a fraction of the MU available for recruitment and that these units are selectively type I muscle fibers (Cinderella fibers). Initiators of this phenomenon are probably the time lag between activations and the stress from driving and vibration exposure.  相似文献   

2.
Physical activity is known to benefit health while muscle activation and movements performed during occupational work in contrast may result in work-related musculoskeletal disorders. Therefore, we posed the research question: which mode of muscle activation may result in a reversal of work-related disorders? To address this, we performed electromyographic (EMG) and kinematic assessments of workers with diverse exposure categories: sedentary monotonous work, prolonged walking/standing, and physically heavy work. The various job-specific exposure variables could be categorized in terms of duration, intensity, repetition, static component, peak force etc. that were subsequently identified as risk factors. Based on sports science principles we developed tailored exercise programs to counteract job exposure. EMG activity during exercise training was monitored to identify principal differences between exercise training and job patterns. Evidence from more than 20 RCT studies including >4000 workers showed positive effects such as decreased muscle pain and increased workability. Finally, we identified plausible underlying mechanisms in muscle tissue – human and animal - that confirmed metabolic, morphological, and hormonal changes with e.g. repetitive work that were reversal to adaptations reported with exercise training. Progress has been made in developing intelligent physical exercise training, IPET, as the best complementary activity to job exposure and includes muscle activations and movements that limit work-related inactivity atrophy as well as overload injury.  相似文献   

3.
《Chronobiology international》2013,30(10):1152-1159
Shift work have been thought to restrict participation in leisure time activities, but the knowledge about physical activity in rotating night shift nurses has been limited so far. We investigated the associations between the rotating night shift work and physical activity using data from a cross-sectional study among nurses and midwives. This study included 354 nurses and midwives (aged 40–60) currently working rotating night shifts and 371 ones working days only. The information on the work characteristics and potential covariates was collected via a personal interview. Weight and height were measured and BMI was calculated. Physical activity was assessed according to the international questionnaire on physical activity – IPAQ, and four domains: leisure time, occupational, transport related and household were analyzed. Women who reported none leisure time activity were defined as recreationally “inactive”. The associations were examined with multiple linear or logistic regression models adjusted for age, season of the year, number of full term births, marital status and BMI. Total and occupational physical activity was significantly higher among nurses working rotating night shifts. However, leisure time activity was significantly affected among rotating night shift nurses and midwives, compared to women working during the days only, with increased odds ratio for recreational “inactivity” (OR?=?1.57, 95% CI: 1.11–2.20). Rotating night shift work among nurses and midwives is associated with higher occupational physical activity but lower leisure time activity. Initiatives supporting exercising among night shift workers are recommended.  相似文献   

4.
Pain changes movement but most studies have focused on basic physiological adaptations during non-functional movement tasks. The existing studies on how pain affects lower extremity gross movement biomechanics have primarily involved movements in which the quadriceps is the primary muscle and little attention has been given to how pain in other muscles affects functional movement. The purpose of this study was to investigate the changes in the gait patterns of healthy subjects that occur during experimental muscle pain in the biceps femoris.In a cross-over study design, 14 healthy volunteers underwent EMG assisted 3D gait analyses before, during and after experimental biceps femoris pain induced by intramuscular injections of hypertonic saline. Isotonic saline injections were administered as a non-painful control.The experimental biceps femoris pain led to reductions in hip extensor moments, knee flexor and lateral rotator moments. No changes in lower extremity kinematics and EMG activity in any of the recorded muscles were observed.It is concluded that experimental muscle pain in the biceps femoris leads to changes in the gait pattern in agreement with unloading of the painful muscle. The changes are specific to the painful muscle. The present study provides support to the theory that musculoskeletal pain is a protective signal leading to changes in movement patterns that serve to unload the painful tissue.  相似文献   

5.
Little is known about the mechanisms leading to chronic neck-shoulder musculoskeletal disorders (MSD). The aim of the present study was to investigate and compare motor function during controlled, low load, repetitive work together with chronic or acute experimental neck-shoulder pain. The clinical study was performed on workers with (n = 12) and without (n = 6) chronic neck-shoulder pain. In the experimental study, experimental muscle pain was induced in healthy subjects by intra-muscular injection of hypertonic saline into the trapezius muscle (n = 10). The assessed parameters related to motor performance were: work task event duration, cutting forces, surface electromyogram (EMG) activity in four shoulder muscles, displacement of the centre of pressure, and arm and trunk 3D movements. For controlled cutting force levels, chronic and acute experimental pain provoked a series of changes: a decreased working rhythm and a protective reorganisation of muscle synergy (experimental study), higher EMG frequency contents which may indicate altered motor unit recruitment, and greater postural activity and a tendency towards increased arm and trunk movements. These pain-related changes can play a role in the development of MSD. The present clinical and experimental study demonstrated similar interactions between motor co-ordination and neck-shoulder pain in occupational settings. We therefore suggest that this experimental model can be used to study mechanisms related to MSD. Information on such modulatory processes may help in the design of new strategies aimed at reducing the development of MSD.  相似文献   

6.
Precise muscle co-ordination is required to maintain normal shoulder function and alterations in synchrony between shoulder muscles can result in loss of full range of movement and pain. Although shoulder pain in kayakers is high with 53% of elite international paddlers reporting shoulder injuries, little information is available regarding the pattern of shoulder muscle recruitment during paddling. The aim of this study was to investigate the normal recruitment pattern of shoulder muscles during the kayak stroke. Nine recreational paddlers without shoulder pain were examined. EMG data from eight shoulder muscles of the dominant arm were collected simultaneously with video data during simulated paddling on an ergometer. EMG data was normalized to time and peak amplitude. Intersubject consistency was evaluated using Pearson correlation analysis. The results of this study indicated a fair to high correlation in at least one phase of the kayak stroke in five of the muscles examined: upper trapezius, supraspinatus, latissimus dorsi, serratus anterior and rhomboid major. This normative data will enable comparisons with the shoulder muscle recruitment patterns in kayakers with shoulder pain in order to determine the role of altered motor control in the painful kayaking shoulder.  相似文献   

7.
High-density surface electromyography (HDEMG) is an electrophysiological technique that can be used to quantify the spatial distribution of activity within muscles. When pain-free individuals perform sustained or repetitive tasks, different regions within a muscle become progressively more active; this is thought to reflect a strategy to redistribute the load to different regions, thus limiting localised muscle fatigue. The use of HDEMG has revealed that when people with musculoskeletal pain perform the same tasks, the distribution of activity within the same muscle is usually different, and the same muscle region tends to be active throughout the whole task without progressive activation of different muscle regions. This potentially results in a focal overload of a muscle region, and may contribute to fatigue, localised muscle pain and potentially pain persistence and/or recurrence over time. Interestingly, not all patients with musculoskeletal pain present with this regional alteration in muscle activation, reflecting the heterogeneity of patient presentations. This article will briefly review the technique of HDEMG followed by a review of studies demonstrating spatial redistribution of muscle activity in asymptomatic people during both isometric and dynamic conditions, including functional tasks. Lastly, the article will provide a review of HDEMG studies with a focus on changes in the behaviour of the lumbar erector spine and upper trapezius in people with spinal pain. These studies have revealed subtle changes in the distribution of muscle activity in people with spinal pain, which may have relevance for onset, persistence or recurrence of symptoms and could become a target of novel therapeutic approaches.  相似文献   

8.
Neurophysiologic theory and some empirical evidence suggest that fatigue caused by physical work may be more effectively recovered during “diverting” periods of cognitive activity than during passive rest; a phenomenon of great interest in working life. We investigated the extent to which development and recovery of fatigue during repeated bouts of an occupationally relevant reaching task was influenced by the difficulty of a cognitive activity between these bouts. Eighteen male volunteers performed three experimental sessions, consisting of six 7-min bouts of reaching alternating with 3 minutes of a memory test differing in difficulty between sessions. Throughout each session, recordings were made of upper trapezius muscle activity using electromyography (EMG), heart rate and heart rate variability (HRV) using electrocardiography, arterial blood pressure, and perceived fatigue (Borg CR10 scale and SOFI). A test battery before, immediately after and 1 hour after the work period included measurements of maximal shoulder elevation strength (MVC), pressure pain threshold (PPT) over the trapezius muscles, and a submaximal isometric contraction. As expected, perceived fatigue and EMG amplitude increased during the physical work bouts. Recovery did occur between the bouts, but fatigue accumulated throughout the work period. Neither EMG changes nor recovery of perceived fatigue during breaks were influenced by cognitive task difficulty, while heart rate and HRV recovered the most during breaks with the most difficult task. Recovery of perceived fatigue after the 1 hour work period was also most pronounced for the most difficult cognitive condition, while MVC and PPT showed ambiguous patterns, and EMG recovered similarly after all three cognitive protocols. Thus, we could confirm that cognitive tasks between bouts of fatiguing physical work can, indeed, accelerate recovery of some factors associated with fatigue, even if benefits may be moderate and some responses may be equivocal. Our results encourage further research into combinations of physical and mental tasks in an occupational context.  相似文献   

9.
BackgroundThe trapeziometacarpal joint is subjected to high compressive forces during powerful pinch and grasp tasks due to muscle loading. In addition, muscle contraction is important for stability of the joint. The aim of the present study is to explore if different muscle activation patterns can be found between three functional tasks.MethodsIsometric forces and fine-wire electromyographic (fEMG) activity produced by three intrinsic and four extrinsic thumb muscles were measured in 10 healthy female volunteers. The participants performed isometric contractions in a lateral key pinch, a power grasp and a jar twist task. The tasks were executed with and without EMG recording to verify if electrode placement influenced force production.ResultsA subject-specific muscle recruitment was found which remained largely unchanged across tasks. Extrinsic thumb muscles were significantly more active than intrinsic muscles in all tasks. Insertion of the fEMG electrodes decreased force production significantly in all tasks.ConclusionThe thumb muscles display a high variability in muscle activity during functional tasks of daily life. The results of this study suggest that to produce a substantial amount of force, a well-integrated, but subject-specific, co-contraction between the intrinsic and extrinsic thumb muscles is necessary.  相似文献   

10.
It is hypothesized that repeated recruitment of low-threshold motor units is an underlying cause of chronic pain in trapezius myalgia. This study investigated the distribution of satellite cells (SCs), myonuclei, and macrophages in muscle biopsies from the trapezius muscle of 42 women performing repetitive manual work, diagnosed with trapezius myalgia (MYA; 44 ± 8 yr; mean ± SD) and 20 matched healthy controls (CON; 45 ± 9 yr). Our hypothesis was that muscle of MYA, in particular type I fibers, would demonstrate higher numbers of SCs, myonuclei, and macrophages compared with CON. SCs were identified on muscle cross sections by combined immunohistochemical staining for Pax7, type I myosin, and laminin, allowing the number of SCs associated with type I and II fibers to be determined. We observed a pattern of SC distribution in MYA previously only reported for individuals above 70 yr of age. Compared with CON, MYA demonstrated 19% more SCs per fiber associated with type I fibers (MYA 0.098 ± 0.039 vs. CON 0.079 ± 0.031; P < 0.05) and 40% fewer SCs associated with type II fibers (MYA 0.047 ± 0.017 vs. CON 0.066 ± 0.035; P < 0.05). The finding of similar numbers of macrophages between the two groups was not in line with our hypothesis and suggests that the elevated SC content of MYA was not due to heightened inflammatory cell contents, but rather to provide new myonuclei. The findings of greater numbers of SCs in type I fibers of muscle subjected to repeated low-intensity work support our hypothesis and provide new insight into stimuli capable of regulating SC content.  相似文献   

11.
We studied the distribution of blood flow within and among muscles of partially curarized (40-100 micrograms/kg body wt) rats during preexercise and at 1 min of low-speed treadmill exercise (15 m/min). Glycogen loss in the deep red muscles and parts of muscles was significantly reduced in the curarized animals during exercise, indicating the fibers in these muscles were recruited to a lesser extent and/or had lower metabolisms than fibers in the same muscles of control rats. However, elevations in blood flow in the red muscles of the curarized rats were as great or greater than those in the control rats. Thus reduced recruitment and/or metabolism of the deep red muscle fibers of the curarized animals was not accompanied by reduced blood flow. These findings suggest a dissociation between red fiber metabolism and blood flow in the curarized rats during the 1st min of slow treadmill exercise and indicate that release of vasodilator substances or local physical factors associated with muscle fiber activity are not solely responsible for the initial hyperemia during exercise.  相似文献   

12.

Background

Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy (31P-MRS). We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism.

Methodology/Principal Findings

We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls). We used 31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr), inorganic phosphate (Pi), Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in 31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition.

Conclusions/Significance

Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by 31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself.  相似文献   

13.
Upper extremity muscle fatigue is challenging to identify during industrial tasks and places changing demands on the shoulder complex that are not fully understood. The purpose of this investigation was to examine adaptation strategies in response to isolated anterior deltoid muscle fatigue while performing simulated repetitive work. Participants completed two blocks of simulated repetitive work separated by an anterior deltoid fatigue protocol; the first block had 20 work cycles and the post-fatigue block had 60 cycles. Each work cycle was 60 s in duration and included 4 tasks: handle pull, cap rotation, drill press and handle push. Surface EMG of 14 muscles and upper body kinematics were recorded. Immediately following fatigue, glenohumeral flexion strength was reduced, rating of perceived exertion scores increased and signs of muscle fatigue (increased EMG amplitude, decreased EMG frequency) were present in anterior and posterior deltoids, latissimus dorsi and serratus anterior. Along with other kinematic and muscle activity changes, scapular reorientation occurred in all of the simulated tasks and generally served to increase the width of the subacromial space. These findings suggest that immediately following fatigue people adapt by repositioning joints to maintain task performance and may also prioritize maintaining subacromial space width.  相似文献   

14.
A motor task can be performed via different patterns of muscle activation that show regularities that can be factorized in combinations of a reduced number of muscle groupings (also referred to as motor modules, or muscle synergies). In this study we evaluate whether an acute noxious stimulus induces a change in the way motor modules are combined to generate movement by neck muscles. The neck region was selected as it is a region with potentially high muscular redundancy. We used the motor modules framework to assess the redistribution of muscular activity of 12 muscles (6 per side) in the neck region of 8 healthy individuals engaged in a head and neck aiming task, in non-painful conditions (baseline, isotonic saline injection, post pain) and after the injection of hypertonic saline into the right splenius capitis muscle. The kinematics of the task was similar in the painful and control conditions. A general decrease of activity was noted for the injected muscle during the painful condition together with an increase or decrease of the activity of the other muscles. Subjects did not adopt shared control strategies (motor modules inter subject similarity at baseline 0.73±0.14); the motor modules recorded during the painful condition could not be used to reconstruct the activation patterns of the control conditions, and the painful stimulus triggered a subject-specific redistribution of muscular activation (i.e., in some subjects the activity of a given muscle increased, whereas in other subjects it decreased with pain). Alterations of afferent input (i.e., painful stimulus) influenced motor control at a multi muscular level, but not kinematic output. These findings provide new insights into the motor adaptation to pain.  相似文献   

15.
In this study of masticatory maturation, the ontogeny of the histochemical fiber type composition of musculus masseter is examined in the omnivorous miniature swine (Sus scrofa). Fiber type characteristics are interpreted by comparison with electromyography (EMG) recorded during feeding behavior. Similar to locomotion studies, the results suggest a correspondence between the composition and arrangement of motor units and their recruitment pattern. Serial sections of masseter muscles from 10 minipigs, ranging from 2 weeks to slightly over 1 year of age, were stained for myosin adenosine triphosphatase (mATPase) activity to distinguish slow-twitch from fast-twitch fibers, and for nicotinamide adenosine dehydrogenase-tetrazolium reductase to assess the aerobic capacity of the same fibers. Although maintaining a uniformly high aerobic capacity throughout ontogeny and in adult animals, a transition is observed in the relative proportions of fast- and slow-twitch fibers. The primarily fast-twitch neonatal pig masseter eventually comprises approximately 25-30% slow-twitch fibers in adults, with a higher predominance of slow fibers in the deep (vs. superficial) and anterior (vs. posterior) regions of the muscle. Furthermore, while individual fibers of adult masseters generally stain for either alkaline- or acid-stable mATPase activity, a substantial proportion of cells in developing animals exhibits the presence of both isozymes. EMG results indicate functional heterogeneity within the masseter of adult pigs. During chewing, when pig chow is replaced by cracked corn, EMG activity in the deep portion of the muscle either decreases or increases slightly. In the superficial portion, however, muscle amplitudes become dramatically higher for corn, surpassing levels generated for chewing the less obdurate chow. These results are consistent with a behavioral transition from neonatal suckling to sustained mastication of foods of more complex textures eaten by adult pigs. The relationship between these fiber type and EMG results for pig masseter corresponds to those pertaining to motor unit recruitment in the extensor muscles of locomotion. Implications of this work for the evolutionary morphology of mastication also are discussed.  相似文献   

16.
People with a history of low back pain (LBP) are at high risk to encounter additional LBP episodes. During LBP remission, altered trunk muscle control has been suggested to negatively impact spinal health. As sudden LBP onset is commonly reported during trunk flexion, the aim of the current study is to investigate whether dynamic trunk muscle recruitment is altered in LBP remission. Eleven people in remission of recurrent LBP and 14 pain free controls performed cued trunk flexion during a loaded and unloaded condition. Electromyographic activity was recorded from paraspinal (lumbar and thoracic erector spinae, latissimus dorsi, deep and superficial multifidus) and abdominal muscles (obliquus internus, externus and rectus abdominis) with surface and fine-wire electrodes. LBP participants exhibited higher levels of co-contraction of flexor/extensor muscles, lower agonistic abdominal and higher antagonistic paraspinal muscle activity than controls, both when data were analyzed in grouped and individual muscle behavior. A sub-analysis in people with unilateral LBP (n = 6) pointed to opposing changes in deep and superficial multifidus in relation to the pain side. These results suggest that dynamic trunk muscle control is modified during LBP remission, and might possibly increase spinal load and result in earlier muscle fatigue due to intensified muscle usage. These negative consequences for spinal health could possibly contribute to recurrence of LBP.  相似文献   

17.
In an overview of the problem of occupational muscle pain the evidence indicates that injury is more common the greater the load and the worse the posture in which the work is performed. The commonest are backstrains or ligament or joint damage due to overuse. Fatigue is associated with alterations in energy metabolites in muscle while pain is often due to microscopical damage to the cellular architecture. The progress of pathological changes in muscle following occupational injury may be similar to those seen in primary fibromyalgia (fibrositis) because of a final common pathway involving calcium-induced secondary damage. Occupational muscle pain frequently occurs in the muscles supporting the upper limb girdle and head in workers engaged in repetitively performing skilled manipulations or activities requiring high or sustained mental concentration. It is suggested that both occupational myalgia of this kind may be due to an imbalance in the use of muscles for postural activity (holding or supporting fine movements) compared to phasic use in dynamic work. While there are undoubtedly muscular indications of damage these may be secondary to alterations in (unconscious) central motor control mechanisms.  相似文献   

18.
The electromyogram (EMG) activity and histochemical properties of intercostal muscles in the anesthetized cat were studied. The parasternal muscles were consistently active during inspiration. The external intercostals in the rostral spaces and the ventral portions of the midthoracic spaces were also recruited during inspiration. The remaining external intercostals were typically silent, regardless of the level of respiratory drive. The internal intercostal muscles located in the caudal spaces were occasionally recruited during expiration. There was a clear correlation between recruitment patterns of the intercostals and the histochemically defined fiber type properties of the muscles. Intercostal muscles that were routinely recruited during inspiration had a significantly higher proportion of slow-oxidative muscle fibers.  相似文献   

19.
Factors affecting outdoor exposure in winter: population-based study   总被引:1,自引:0,他引:1  
The extent of outdoor exposure during winter and factors affecting it were examined in a cross-sectional population study in Finland. Men and women aged 25–74 years from the National FINRISK 2002 sub-study (n=6,591) were queried about their average weekly occupational, leisure-time and total cold exposure during the past winter. The effects of gender, age, area of residence, occupation, ambient temperature, self-rated health, physical activity and education on cold exposure were analysed. The self-reported median total cold exposure time was 7 h/week (8 h men, 6 h women),<1 h/week (2 h men, 0 h women) at work, 4 h/week (5 h men, 4 h women) during leisure time and 1 h/week (1 h men, 1.5 h women) while commuting to work. Factors associated with increased occupational cold exposure among men were: being employed in agriculture, forestry and industry/mining/construction or related occupations, being less educated and being aged 55–64 years. Factors associated with increased leisure-time cold exposure among men were: employment in industry/mining/construction or related occupations, being a pensioner or unemployed, reporting at least average health, being physically active and having college or vocational education. Among women, being a housewife, pensioner or unemployed and engaged in physical activity increased leisure-time cold exposure, and young women were more exposed than older ones. Self-rated health was positively associated with leisure time cold exposure in men and only to a minor extent in women. In conclusion, the subjects reported spending 4% of their total time under cold exposure, most of it (71%) during leisure time. Both occupational and leisure-time cold exposure is greater among men than women.  相似文献   

20.
We studied the forelimb interosseus muscle in horses, Equus caballus, to determine the muscular properties inherent in its function. Some authors have speculated that the equine interosseus contains muscle fibers at birth only to undergo loss of these fibers through postnatal ontogeny. We describe the muscle fibers in eight interosseus specimens from adult horses. These fibers were studied histochemically using myosin ATPase studies and immunocytochemically using several antibodies directed against type I and type II myosin heavy chain antibodies. We determined that 95% of the fibers were type I, presumed slow-twitch fibers. All fibers exhibited normal morphological appearance in terms of fiber diameter and cross-sectional area, suggesting that the muscles are undergoing normal cycles of recruitment. SDS-PAGE studies of myosin heavy chain isoforms were consistent with these observations of primarily slow-twitch muscle. Fibers were determined to be approximately 800 microm long when studied using nitric acid digestion protocols. Short fiber length combined with high pinnation angles suggest that the interosseus muscle is able to generate large amounts of force but can produce little work (measured as pulling the distal tendon proximally). While the equine interosseus muscle has undergone a general reduction of muscle content during its evolution, it remains composed of a significant muscular component that likely contributes to forelimb stability and elastic storage of energy during locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号