首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc deficiency (ZD) is teratogenic in rats, and fetal skeletal defects are prominent. This study identifies fetal skeletal malformations that affect calcified and non-calcified bone tissue as a result of gestational zinc deficiency in rats, and it assesses the effect of maternal ZD in fetal bone calcification. Pregnant Sprague-Dawley rats (180-250 g) were fed 1) a control diet (76.4 micrograms Zn/g diet) ad libitum (group C), 2) a zinc-deficient diet (0 microgram/g) ad libitum (group ZD), or 3) the control diet pair-fed to the ZD rats (group PF). On day 21 of gestation, laparotomies were performed. Fetuses were weighed, examined for external malformations, and stained in toto with a double-staining technique for the study of skeletal malformations. Maternal and fetal tissues were used for Zn, Mg, Ca, and P determinations. Gross external malformations were present in 97% of the ZD fetuses. No external malformations were found in fetuses from groups C and PF. Ninety-one percent of cleared ZD fetuses had multiple skeletal malformations, whereas only 3% of the fetuses of group PF had skeletal defects; no skeletal malformations were found in fetuses from group C. Some of the skeletal malformations described in the ZD fetuses, mainly affecting non-calcified bone, were not mentioned in previous reports, thus stressing the importance of using double-staining techniques. Examination of stained fetuses and counting of ossification centers revealed important calcification defects in ZD fetuses. These effects were confirmed by lower Ca and P concentrations in fetal bone with alteration of the Ca:P ratio.  相似文献   

2.
The relationship between magnesium (Mg) and zinc (Zn) in soft tissues and bone of rats was studied after administration of unbalanced mineral diets. Minerals and metals in soft tissues and bone were determined using inductively coupled plasma emission spectrometry (ICP). There were significant positive correlations between serum Zn and Mg levels, between serum Zn and Zn content of soft tissues and bone, and between serum Mg levels and Zn content of bone and soft tissues in rats fed unbalanced mineral diets. A significant positive correlation was also found between Zn and Mg content in the lumbar spine and femoral bone of rats. It appears that altered bone mineralization induced by unbalanced mineral diets leads to mobilization of Mg and Zn from rat bones in similar ways.  相似文献   

3.
Heart failure is often characterized by skeletal muscle atrophy. The mechanisms underlying muscle wasting, however, are not fully understood. We studied 30 Dahl salt-sensitive rats (10 male, 20 female) fed either a high-salt (HS; n = 15) or a low-salt (LS; n = 15) diet. This strain develops cardiac hypertrophy and failure when fed a HS diet. LS controls were matched to HS rats for gender and duration of diet. Body mass, food intake, and muscle mass and composition were measured. Skeletal muscle protein synthesis was measured by isotope dilution. An additional group of 27 rats (HS, n = 16; LS; n = 11) were assessed for expression of genes regulating protein breakdown and apoptosis. Gastrocnemius and plantaris muscles weighed less (16 and 22%, respectively) in HS than in LS rats (P < 0.01). No differences in soleus or tibialis anterior weights were found. Differences in muscle mass were abolished after data were expressed relative to body size, because HS rats tended (P = 0.094) to weigh less. Lower body mass in HS rats was related to a 16% reduction (P < 0.01) in food intake. No differences in muscle protein or DNA content, the protein-to-DNA ratio, or muscle protein synthesis were found. Finally, no differences in skeletal muscle gene expression were found to suggest increased protein breakdown or apoptosis in HS rats. Our results suggest that muscle wasting in this model of heart failure is not associated with alterations in skeletal muscle metabolism. Instead, muscle atrophy was related to reduced body weight secondary to decreased food intake. These findings argue against the notion that heart failure is characterized by a skeletal muscle myopathy that predisposes to atrophy.  相似文献   

4.
Previous studies have revealed that magnesium (Mg) plays a significant role in bone health; however, few studies have investigated the effects of Mg supplementation in diets with different calcium (Ca) levels on the bone status and bone metabolism in a growing stage. In this present study, we tested the effects of Mg supplementation on bone status in growing female rats, relative to Ca intake levels. A total of 40 Sprague–Dawley female rats aged 6 weeks were divided into the following four groups and fed for 12 weeks as indicated: (1) LCaAMg: low Ca (Ca, 0.1 % of total diet) and adequate Mg (Mg, 0.05 % of total diet), (2) LCaHMg: low Ca and high Mg ( Mg, 0.1 % of total diet), (3) ACaAMg: adequate Ca (Ca, 0.5 % of total diet) and adequate Mg, and (4) ACaHMg: adequate Ca and high Mg. Our results showed that Mg supplementation with the adequate Ca diet significantly increased the bone mineral contents, bone size (bone area and bone thickness), and bone mineral density of femur or tibia by improving bone metabolism without changing Ca absorption. Mg supplementation significantly increased the serum osteocalcin in the adequate-Ca-diet group (p?<?0.05), while the Mg supplementation significantly decreased the serum level of C-telopeptide cross-links of type I collagen in the adequate-Ca-diet group (p?<?0.001). This study suggests that Mg supplementation with adequate Ca intake in the growing stage may increase the bone mineral density and bone size by improving bone metabolism.  相似文献   

5.
Weanling rats were fed a casein-based diet supplemented to give dietary methionine (Met) concentrations of 0.41, 0.61, and 1.50%. After 2 weeks of feeding, the rats received intraperitoneally 800 nCi of 2-14C-labeled and/or methyl-3H-labeled L-Met. The animals were killed 20 min, 1 hr, or 2 hr after the isotope injection and the specific radioactivity of adenosylmethionine (AdoMet) as well as the total acid-soluble radioactivity was analyzed in the liver and skeletal muscle. Met concentrations of the liver and skeletal muscle were increased 20-fold by the diet containing 1.50% of Met. In the liver, but not in skeletal muscle, accumulation of AdoMet closely followed changes in Met concentration. Within 2 hr after intraperitoneal injection, the rate of disappearance of 3H label from the acid-soluble fraction was slow in both tissues; increasing in the liver and decreasing in skeletal muscle with increasing dietary Met concentration. At the same time, disappearance of 14C label was slow in both tissues in the rats fed the toxic Met diet, and also in the liver of the rats fed the Met-deficient diet. Decline of the specific radioactivity of the AdoMet pool with respect to 3H label was similar to that of 14C label in the skeletal muscle at all dietary Met concentrations. In the liver, the rate of disappearance of 14C label from the AdoMet pool was markedly increased and that of the 3H label slightly decreased with increasing dietary Met supply. Met deprivation resulted in rapid disappearance of 3H label from the hepatic AdoMet pool, whereas the disappearance of the 14C label was very slow. The results indicate that hepatic Met recycling is very effective with deficient or adequate dietary Met concentrations. In skeletal muscle, the capacity to catabolize extra Met is very limited and continuous flow of Met to liver takes place. Unlike in the liver, in skeletal muscle the transsulfuration route is not adaptable to changes in Met supply and plays a minor role in Met catabolism. The approach used to determine the efficacy and adaptation of methionine salvage pathways by following simultaneously the decline of the specific radioactivities of the methyl group and the methionyl carbon chain of AdoMet following intraperitoneal injection of double-labeled Met has several advantages over that used in literature reports. It offers a reliable means of observing these metabolic pathways in whole animals without disruption of metabolite fluxes.  相似文献   

6.
In order to characterize the phosphoenzymes (EPs) formed from MgATP and CaATP as substrates, the effects of Mg2+ and Ca2+ outside SR vesicles on the hydrolysis rates of EPs were examined by using purified and unpurified Ca-ATPases of sarcoplasmic reticulum (SR) at low [gamma-32P]ATP (4-10 microM), 0.1 M KCl, pH 7.0, and 0 degrees C. When the phosphorylation reaction was stopped by adding an excess of EDTA over Ca and Mg, two components of EP, EPfast (rate constant, kfast = 15-20 min-1), and EPslow (kslow = 0.3-0.4 min-1), were recognized in the time course of EP decomposition. These two rates did not depend on the Ca2+ or Mg2+ concentration in the medium during the phosphorylation reaction, although the proportions of EPfast and EPslow essentially depended on the concentrations of MgATP and CaATP in the phosphorylation reaction medium. The proportion of EPfast increased with increasing [MgATP]/[CaATP] in the medium, whereas that of EPslow decreased. The rate of EPslow hydrolysis in the presence of excess EDTA was basically the same as that of EP formed from CaATP. These results suggest that EPfast and EPslow are derived from MgATP and CaATP, respectively, and EPfast is a reaction intermediate with Mg bound at the substrate site (MgEP), while the main EPslow is a reaction intermediate with Ca bound at the substrate site (CaEP) which is readily converted to metal-free EP by EDTA addition (Shigekawa et al., (1983) J. Biol. Chem. 258, 8698-8707). Mg2+ added outside SR vesicles stimulated the conversion of CaEP to MgEP and inhibited the hydrolysis of MgEP in the relatively high concentration range (K(Mg) = 7.9 mM). Ca2+ added outside SR vesicles stimulated the conversion of MgEP to CaEP and inhibited the conversion of CaEP to MgEP by Mg2+ addition. The Ca2+ outside SR vesicles did not essentially affect the hydrolysis of MgEP. These results suggest that the interconversion between MgEP and CaEP takes place during the reaction by exchange of the divalent cation on the substrate site. The following scheme is proposed. (formula: see text)  相似文献   

7.
Variable durations of food restriction (FR; lasting weeks to years) and variable FR intensities are applied to animals in life span-prolonging studies. A reduction in mitochondrial proton leak is suggested as a putative mechanism linking such diet interventions and aging retardation. Early mechanisms of mitochondrial metabolic adaptation induced by FR remain unclear. We investigated the influence of different degrees of FR over 3 days on mitochondrial proton leak and mitochondrial energy metabolism in rat hindlimb skeletal muscle. Animals underwent 25, 50, and 75% and total FR compared with control rats. Proton leak kinetics and mitochondrial functions were investigated in two mitochondrial subpopulations, intermyofibrillar (IMF) and subsarcolemmal (SSM) mitochondria. Regardless of the degree of restriction, skeletal muscle mass was not affected by 3 days of FR. Mitochondrial basal proton conductance was significantly decreased in 50% restricted rats in both mitochondrial subpopulations (46 and 40% for IMF and SSM, respectively) but was unaffected in other groups compared with controls. State 3 and uncoupled state 3 respiration rates were decreased in SSM mitochondria only for 50% restricted rats when pyruvate + malate was used as substrate (-34.5 and -38.9% compared with controls, P < 0.05). IMF mitochondria respiratory rates remained unchanged. Three days of FR, particularly at 50% FR, were sufficient to lower mitochondria energetic metabolism in both mitochondrial populations. Our study highlights an early step in mitochondrial adaptation to FR and the influence of the severity of restriction on this adaptation. This step may be involved in an aging-retardation process.  相似文献   

8.
The hypercalciuria and hypermagnesuria that accompany aldosteronism contribute to a fall in plasma ionized extracellular Ca2+ and Mg2+ concentrations ([Ca2+]o and [Mg2+]o). Despite these losses and the decline in extracellular levels of these cations, total intracellular and cytosolic free Ca2+ concentration ([Ca2+]i) is increased and oxidative stress is induced. This involves diverse tissues, including peripheral blood mononuclear cells (PBMC) and plasma. The accompanying elevation in plasma parathyroid hormone (PTH) and reduction in bone mineral density caused by aldosterone (Aldo)-1% NaCl treatment (AldoST) led us to hypothesize that Ca2+ loading and altered redox state are due to secondary hyperparathyroidism (SHPT). Therefore, we studied the effects of total parathyroidectomy (PTx). In rats receiving AldoST, without or with a Ca2+-supplemented diet and/or PTx, we monitored urinary Ca2+ and Mg2+ excretion; plasma [Ca2+]o, [Mg2+]o, and PTH; PBMC [Ca2+]i and H2O2 production; plasma alpha1-antiproteinase activity; total Ca2+ and Mg2+ in bone, myocardium, and rectus femoris; and gp91(phox) labeling in the heart. We found that 1) the hypercalciuria and hypermagnesuria and decline (P < 0.05) in plasma [Ca2+]o and [Mg2+]o that occur with AldoST were not altered by the Ca2+-supplemented diet alone or with PTx; 2) the rise (P < 0.05) in plasma PTH with AldoST, with or without the Ca2+-supplemented diet, was prevented by PTx; 3) increased (P < 0.05) PBMC [Ca2+]i and H2O2 production, increased total Ca2+ in heart and skeletal muscle, and fall in bone Ca2+ and Mg2+ and plasma alpha1-antiproteinase activity with AldoST were abrogated (P < 0.05) by PTx; and 4) gp91(phox) activation in right and left ventricles at 4 wk of AldoST was attenuated by PTx. AldoST is accompanied by SHPT, with parathyroid gland-derived calcitropic hormones being responsible for Ca2+ overload in diverse tissues and induction of oxidative stress. SHPT plays a permissive role in the proinflammatory vascular phenotype.  相似文献   

9.
We tried to elucidate the effects of a brief and severe model of food restriction on insulin sensitivity in female rats, focusing on key proteins involved in the insulin signalling pathway in skeletal muscle and adipose tissue after 5, 10 and 15 days of food restriction. Using euglycemic clamp, we detected that food-restricted rats are significantly less sensitive to insulin action than control rats. However, the time of restriction promotes a progressive increase on insulin sensitivity. The analysis of the insulin signalling pathway showed a tissue-specific regulation of several proteins involved in insulin signalling. In skeletal muscle, insulin receptor substrate 1 and Glut4 are up-regulated at the end of the food restriction period, just the opposite of what we found in adipose tissue. In conclusion, a 50% reduction of food intake modulates insulin sensitivity through a tissue-specific regulation of the insulin signalling pathway in the main target tissues for this hormone.  相似文献   

10.
Ethanol (EtOH) administration to rats for 4 wk markedly decreased Mg(2+) content in several tissues, including liver. Total cellular Mg(2+) accounted for 26.8 +/- 2.4 vs. 36.0 +/- 1.4 nmol Mg(2+)/mg protein in hepatocytes from EtOH-fed and control rats, respectively, and paralleled a 13% decrease in cellular ATP content. Stimulation of alpha(1)- or beta-adrenergic receptor or acute EtOH administration did not elicit an extrusion of Mg(2+) from liver cells of EtOH-fed rats while releasing 5% of total tissue Mg(2+) content from hepatocytes of control rats. Despite the 25% decrease in Mg(2+) content, hepatocytes from EtOH-fed rats did not accumulate Mg(2+) following stimulation of protein kinase C signaling pathway, whereas control hepatocytes accumulated approximately 2 nmol Mg(2+). mg protein(-1). 4 min(-1). Together, these data indicate that Mg(2+) homeostasis and transport are markedly impaired in liver cells after prolonged exposure to alcohol. The inability of liver cells, and possibly other tissues, to accumulate Mg(2+) can help explain the reduction in tissue Mg(2+) content following chronic alcohol consumption.  相似文献   

11.
The aim of this work is to study the effect of training and Mg supplementation on body pools of Mg and on Mg tissue distribution. Forty male Wistar rats were divided into four groups (n=10): control group (C); trained group (T); Mg-supplemented group (+Mg); and trained and Mg-supplemented group (+MgT). The Mg supplement (100 ppm of Mg) was given in the drinking water for 21 d. The training consisted of swimming during 60% of maximal swimming time obtained in the first session to exhaustion, during 3 wk (5 d a week). The variables measured were: erythrocytes (RBC), hemoglobin (Hb), hematocrit (Hto), total proteins (TP), and Mg in serum, RBC, liver, muscle, bone, and kidney. There was less Mg in liver, muscle, and erythrocyte in trained animals than in control or supplemented animals (T vs C, +MgT vs C and +MgT vs +Mg) (p < 0.01). Trained antimals (T and +MgT) showed higher Mg kidney rates than the untrained ones (p<0.01). There was less bone Mg in control (C) and in supplemented and trained (+MgT) groups than in trained (T) and in supplemented (+Mg) animals (p<0.01). Serum Mg showed a decreasing concentration profile in the following order: +Mg, +MgT, T, C (p<0.01). We conclude that Mg supplementation improves bone and serum Mg levels, but this does not affect Mg status in soft tissues. Maintained exercise leads to a diminution of Mg in the aforementioned soft tissues that is not noticeable in serum, probably provoked by an increase of renal excretion.  相似文献   

12.
Type 2 diabetes is a heterogeneous metabolic disease characterized by insulin resistance and β-cell dysfunction leading to hyperglycaemia and dyslipidaemia. Dietary intervention seems to improve some of these cellular complications, namely insulin resistance. Our aim was to evaluate the effects of dietary restriction on systemic and skeletal muscle oxidative stress and insulin resistance in normal Wistar rats and Goto–Kakizaki (GK) rats, a non-obese type 2 diabetic animal model. Four-month-old normal and diabetic rats were separated in four groups. One group of each strain was maintained with ad libitum standard diet, and the other group was submitted to a dietary restriction (50% of control animals daily food intake), during 2 months. Metabolic profile, insulin resistance indexes and muscle lipids were determined. Oxidative stress parameters were also measured at systemic and muscle levels: protein carbonyl, 8-hydroxy-2′-deoxyguanosine and free 8-isoprostane. Dietary restriction improved lipid profile in both strains and urinary free 8-isoprostane and plasma carbonyl compounds in diabetic rats. An improvement of muscle triglycerides accumulation and 8-isoprostane concentration and a reduction of insulin resistance were also observed in GK rats. Our data show that dietary restriction ameliorates systemic and skeletal muscle oxidative stress state in type 2 diabetes, which is associated with improved insulin resistance.  相似文献   

13.
Whole body protein synthesis is reduced during the fed-to-fasted transition and in cases of chronic dietary restriction; however, less is known about tissue-specific alterations. We have assessed the extent to which protein synthesis in cardiac muscle responds to dietary perturbations compared with liver and skeletal muscle by applying a novel (2)H(2)O tracer method to quantify tissue-specific responses of protein synthesis in vivo. We hypothesized that protein synthesis in cardiac muscle would be unaffected by acute fasting or food restriction, whereas protein synthesis in the liver and gastrocnemius muscle would be reduced when there is a protein-energy deficit. We found that, although protein synthesis in liver and gastrocnemius muscle was significantly reduced by acute fasting, there were no changes in protein synthesis in the left ventricle of the heart for either the total protein pool or in isolated mitochondrial or cytosolic compartments. Likewise, a chronic reduction in calorie intake, induced by food restriction, did not affect protein synthesis in the heart, whereas protein synthesis in skeletal muscle and liver was decreased. The later observations are supported by changes in the phosphorylation state of two critical mediators of protein synthesis (4E-BP1 and eIF2alpha) in the respective tissues. We conclude that cardiac protein synthesis is maintained in cases of nutritional perturbations, in strong contrast to liver and gastrocnemius muscle, where protein synthesis is decreased by acute fasting or chronic food restriction.  相似文献   

14.
Three coenzyme A (CoA) molecular species, i.e., acetyl-CoA, malonyl-CoA, and nonesterified CoA (CoASH), in 13 types of fasted rat tissue were analyzed. A relatively larger pool size of total CoA, consisting of acetyl-CoA, malonyl-CoA, and CoASH, was observed in the medulla oblongata, liver, heart, and brown adipose tissue. Focusing on changes in the CoA pool size in response to the nutrient composition of the diet given, total CoA pools in rats continuously fed a high-fat diet for 4 weeks were significantly higher in the hypothalamus, cerebellum, and kidney, and significantly lower in the liver and skeletal muscle than those of rats fed a high-carbohydrate or high-protein diet. In particular, reductions in the liver were remarkable and were caused by decreased CoASH levels. Consequently, the total CoA pool size was reduced by approximately one-fifth of the hepatic contents of rats fed the other diets. In the hypothalamus, which monitors energy balance, all three CoA molecular species measured were at higher levels when rats were fed the high-fat diet. Thus, it was of interest that feeding rats a high-fat diet affected the behaviors of CoA pools in the hypothalamus, liver, and skeletal muscle, suggesting a significant relationship between CoA pools, especially malonyl-CoA and/or CoASH pools, and lipid metabolism in vivo.  相似文献   

15.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   

16.
Many investigators have reported changes in mineral status with age but conflicting observations were done concerning mineral absorption. This study was conducted to clarify the effect of aging on intestinal absorption and status of minerals, using a stable isotope approach. To do so, 40 rats of different ages: 9, 22, 44, and 88 weeks were fed with a semi-purified diet for a total of 30 days. At the beginning of the 4th week, the rats received a stable isotope solution containing (44)Ca, (25)Mg, (67)Zn, and (65)Cu. Individual feces and urine were then collected during 4 consecutive days in order to measure stable isotopes by inductively coupled plasma/mass spectrometry (ICP/MS) and blood and tissues were sampled for mineral status determination. Intestinal absorption of (44)Ca and (67)Zn considerably decreased with age, whereas intestinal (25)Mg absorption decreased only moderately and intestinal (65)Cu absorption was unaffected. Plasma and bone calcium (Ca) were not modified with age whereas urinary Ca excretion considerably increased. Plasma and erythrocyte magnesium (Mg) levels were unaffected with age whereas urinary Mg excretion and Mg bone level decreased. Plasma zinc (Zn) level decreased and bone Zn level increased with age whereas red blood cell and liver Zn level and urinary Zn excretion remained unchanged. Plasma Cu level increased with age whereas liver and bone Cu levels and urinary Cu excretion remained unchanged. These results show that the effect of aging on the intestinal mineral absorption and status differ largely according to the mineral considered. Further studies are required under different nutritional conditions to explore the underlying mechanisms during aging and to adjust a better nutrition of the elderly.  相似文献   

17.
We previously reported that dietary amino acid restriction induces the accumulation of triglycerides (TAG) in the liver of growing rats. However, differences in TAG accumulation in individual cell types or other tissues were not examined. In this study, we show that TAG also accumulates in the muscle and adipose tissues of rats fed a low amino acid (low-AA) diet. In addition, dietary lysine restriction (low-Lys) induces lipid accumulation in muscle and adipose tissues. In adjusting the nitrogen content to that of the control diet, we found that glutamic acid supplementation to the low-AA diet blocked lipid accumulation, but supplementation with the low-Lys diet did not, suggesting that a shortage of nitrogen caused lipids to accumulate in the skeletal muscle in the rats fed a low-AA diet. Serum amino acid measurement revealed that, in rats fed a low-Lys diet, serum lysine levels were decreased, while serum threonine levels were significantly increased compared with the control rats. When the threonine content was restricted in the low-Lys diet, TAG accumulation induced by the low-Lys diet was completely abolished in skeletal muscle. Moreover, in L6 myotubes cultured in medium containing high threonine and low lysine, fatty acid uptake was enhanced compared with that in cells cultured in control medium. These findings suggest that the increased serum threonine in rats fed a low-Lys diet resulted in lipid incorporation into skeletal muscle, leading to the formation of fatty muscle tissue. Collectively, we propose conceptual hypothesis that “amino-acid signal” based on lysine and threonine regulates lipid metabolism.  相似文献   

18.
We examined effects of 4 wk of food restriction on ovariectomy-related changes in muscle, bone, and plasma insulin-like growth factor I (IGF-I). Female Sprague-Dawley rats (7 mo old) were assigned to freely eating groups: sham-operated (Sham), ovariectomized (Ovx-AL), and estrogen (estradiol)-replaced Ovx (Ovx+E(2)). Ovx rats were also pair fed with Sham (Ovx-PF) or weight matched with Sham by food restriction (Ovx-FR). Ovx-AL and Ovx-PF rats had similar estrogen status and body weight; therefore, the groups were combined (group: Ovx). After treatment, body weight was approximately 10% greater in Ovx than in Sham rats (P < 0.05), and muscle weight-to-body weight ratios were comparable among all groups. Bone mineral contents of whole tibiae in Ovx-FR and Ovx were approximately 15% (P < 0.05) and approximately 6% lower than in Sham rats (P < 0.05), respectively. Plasma IGF-I was approximately 30% higher in Ovx than in Sham (P < 0.05) but was similar between Sham and Ovx-FR. IGF-I was highly correlated with body weight and muscle mass. Within non-estrogen-replaced Ovx rats, IGF-I explained approximately 19% of variance in bone mineral content after accounting for variance attributable to body weight. Findings suggest that estrogen acts indirectly on skeletal muscle and bone in rats through regulation of body growth by factors such as IGF-I.  相似文献   

19.
Total hepatic Mg(2+) content decreases by >25% in animals maintained for 2 weeks on Mg(2+) deficient diet, and results in a >25% increase in glucose 6-phosphatase (G6Pase) activity in isolated liver microsomes in the absence of significant changed in enzyme expression. Incubation of Mg(2+)-deficient microsomes in the presence of 1mM external Mg(2+) returned G6Pase activity to levels measured in microsomes from animals on normal Mg(2+) diet. EDTA addition dynamically reversed the Mg(2+) effect. The effect of Mg(2+) or EDTA persisted in taurocholic acid permeabilized microsomes. An increase in G6Pase activity was also observed in liver microsomes from rats starved overnight, which presented a ~15% decrease in hepatic Mg(2+) content. In this model, G6Pase activity increased to a lesser extent than in Mg(2+)-deficient microsomes, but it could still be dynamically modulated by addition of Mg(2+) or EDTA. Our results indicate that (1) hepatic Mg(2+) content rapidly decreases following starvation or exposure to deficient diet, and (2) the loss of Mg(2+) stimulates G6P transport and hydrolysis as a possible compensatory mechanism to enhance intrahepatic glucose availability. The Mg(2+) effect appears to take place at the level of the substrate binding site of the G6Pase enzymatic complex or the surrounding phospholipid environment.  相似文献   

20.
Electrolytic analysis carried out with the atomic absorption spectrophotometer permitted to compare the cationic (Ca2+, Mg2+, Zn2+, K+ and Na+) tissue content of spontaneously hypertensive male rats (SHR) and normotensive male Wistar rats (NWR). In all SHR-tissues, Zn2+ is augmented, but mainly in the atria (left atrium), inferior vena cava, left ventricle, and skeletal muscle. The inferior cava vein and the right atrium have a similar, accentuated high bivalent (Ca2+, Mg2+, and Zn2+) cation content; Ca2+ and Mg2+ is present in a minor content in the right ventricle and type II "pale" skeletal muscle while only Mg2+ was also reduced in the left atrium, aorta, and the whole blood. A higher K+ concentration is seen in the right atrium, aorta, and type I "red" skeletal muscle. In the aortic wall and the whole blood a higher Na+- tissue content is found, confirming earlier observations. There is a discret water retention in the tissues from the left ventricle and skeletal muscle, simultaneously with a small depletion in the whole blood. We have concluded, that there is a specific cationic profile in SHR structural and functional different cardiovascular tissues, including skeletal muscle. The cationic tissue distribution is related to underlying genetic and adaptative factors and may be involved into specific drug effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号