首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For infants, the introduction of food other than breast milk is a high risk period due to diarrheal diseases, and may be corroborated with a shift in the faecal microbiota. This longitudinal study was the first undertaken to understand the effect of the supplementation on the infant's faecal microbiota and particularly the bifidobacteria. Eleven infants were enrolled. Their faecal microbiota were analysed using temporal temperature gradient gel electrophoresis (TTGE) with bacterial and bifidobacterial primers. In parallel, bifidobacterial counts were followed using competitive PCR. Three periods were distinguished: exclusive breastfeeding (Bf period), weaning (i.e. formula-milk addition, W period) and postweaning (i.e. breastfeeding cessation, Pw period). The bifidobacterial counts were not modified, reaching 10.5 (Log10 cells g(-1) wet weight). In the TTGE profiles, the main identified bands corresponded to Escherichia coli, Ruminococcus sp. and Bifidobacterium sp., more precisely Bifidobacterium longum, Bifidobacterium infantis and Bifidobacterium breve. For both TTGE profiles, the analysis of the distance suggested a maturation of the faecal microbiota but no correlation could be established with the diet. Despite a high interindividual variability, composition of the faecal microbiota appeared more homogenous after weaning and this point may be correlated with the cessation of breastfeeding.  相似文献   

2.
【背景】目前双歧杆菌的益生功能被普遍认可,越来越多的研究开始关注肠道中双歧杆菌的生物多样性。然而双歧杆菌是肠道中的低丰度物种,现有技术尚难以深入研究其多样性。【目的】基于双歧杆菌16SrRNA基因序列筛选一对适用于分析粪便样品中低丰度双歧杆菌属多样性的特异性引物。【方法】依据已有引物的相对位置及其与双歧杆菌属16S rRNA基因序列的匹配率,将引物重组优化得到扩增片段800 bp的双歧杆菌属特异性引物;通过PCR扩增和琼脂糖凝胶电泳对引物进行实验筛选和特异性验证;以细菌通用引物(27f/1492r)为参照,通过单分子实时(Single-molecule real-time,SMRT)测序技术对不同引物的3份粪便样品中细菌的DNA扩增子进行测序,在种水平上分析比较不同引物的优劣。【结果】对文献中已有的9对双歧杆菌特异性引物进行重组并优化,其中2对引物的理论特异性较好且扩增产物大于800 bp,它们分别为Bif164-f/Pbi R2和Pbi F1/Pbi R2。PCR扩增和琼脂糖凝胶电泳实验发现,Bif164-f/Pbi R2的扩增条带明亮且无拖尾。此外,利用SMRT测序平台对引物27f/1492r和Bif164-f/Pbi R2的3份粪便样品中细菌的DNA扩增子进行测序并分析。27f/1492r扩增子的分析结果显示,3份样品依次分别含1、3、4个双歧杆菌种且双歧杆菌的平均相对含量为0.34%;而Bif164-f/Pbi R2扩增子的分析结果显示,3份样品依次分别含2、6和8个双歧杆菌种且双歧杆菌的平均相对含量为98.72%。上述结果表明,Bif164-f/Pbi R2可在种水平上特异地检出粪便中低丰度的双歧杆菌,进而实现样品中双歧杆菌的多样性分析。【结论】筛选出一对双歧杆菌特异性引物Bif164-f/PbiR2,可在种水平上分析粪便样品中低丰度双歧杆菌的生物多样性,同时也验证了理论结合实验进行引物筛选这种方法的可行性。  相似文献   

3.
Aims:  The potential use of bifidobacteria as indicators for faecal contamination was studied along a sheep meat production and processing chain. The levels of bifidobacteria were compared with those of Escherichia coli . Total viable counts were followed along the chain (244 samples).
Methods and Results:  Forty-three per cent of the samples contained bifidobacteria, of which 15% were solely detected using a PCR method based on the hsp60 gene and not by a culture-based method. Bifidobacteria were detected in only three of nine sheep faeces samples using one or the other method. However, carcasses (types C and E) were highly contaminated. These sample types (30% and 28%, respectively) were positive for bifidobacteria and negative for E. coli . The species Bifidobacterium pseudolongum and Bif. thermophilum , isolated from faecal samples, were predominant. Bifidobacterium choerinum were found in C, D, E and F sample types.
Conclusions:  Bifidobacteria were shown more efficient than E. coli in carcasses samples. The presence of Bif. choerinum suggested a faecal pork contamination.
Significance and Impact of the Study:  Detection and identification of bifidobacteria, in correlation with E. coli counting, should improve hygiene quality of mutton processing chains.  相似文献   

4.
16SrDNA-targeted genus- and species-specific PCR primers have been developed and used for the identification and detection of bifidobacteria. These primers cover all of the described species that inhabit the human gut, or occur in dairy products. Identification of cultured bifidobacteria using PCR primer pairs is rapid and accurate, being based on nucleic acid sequences. Detection of bifidobacteria can be achieved using DNA extracted from human faeces as template in PCR reactions. We have found that, in adult faeces, the Bifidobacterium catenulatum group was the most commonly detected species, followed by Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum. In breastfed infants, Bifidobacterium breve was the most frequently detected species, followed by Bifidobacterium infantis, B. longum and B. bifidum. It was notable that the B. catenulatum group was detected with the highest frequency in adults, although it has often been reported that B. adolescentis is the most common species. Real-time, quantitative PCR using primers targeting 16S rDNA shows promise in the enumeration of bifidobacteria in faecal samples. The approach to detect the target bacteria with quantitative PCR described in this review will contribute to future studies of the composition and dynamics of the intestinal microflora.  相似文献   

5.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

6.
The 16S rRNA gene is conserved across all bacteria and as such is routinely targeted in PCR surveys of bacterial diversity. PCR primer design aims to amplify as many different 16S rRNA gene sequences from as wide a range of organisms as possible, though there are no suitable 100% conserved regions of the gene, leading to bias. In the gastrointestinal tract, bifidobacteria are a key genus, but are often under-represented in 16S rRNA surveys of diversity. We have designed modified, 'bifidobacteria-optimised' universal primers, which we have demonstrated detection of bifidobacterial sequence present in DNA mixtures at 2% abundance, the lowest proportion tested. Optimisation did not compromise the detection of other organisms in infant faecal samples. Separate validation using fluorescence in situ hybridisation (FISH) shows that the proportions of bifidobacteria detected in faecal samples were in agreement with those obtained using 16S rRNA based pyrosequencing. For future studies looking at faecal microbiota, careful selection of primers will be key in order to ensure effective detection of bifidobacteria.  相似文献   

7.
The species Bifidobacterium lactis, with its main representative strain Bb12 (DSM 10140), is a yoghurt isolate used as a probiotic strain and is commercially applied in different types of yoghurts and infant formulas. In order to ensure the genetic identity and safety of this bacterial isolate, species- and strain-specific molecular tools for genetic fingerprinting must be available to identify isolated bifidobacteria or lactic acid bacteria from, e.g., various clinical environments of relevance in medical microbiology. Two opposing rRNA gene-targeted primers have been developed for specific detection of this microorganism by PCR. The specificity of this approach was evaluated and verified with DNA samples isolated from single and mixed cultures of bifidobacteria and lactobacilli (48 isolates, including the type strains of 29 Bifidobacterium and 9 Lactobacillus species). Furthermore, we performed a Multiplex-PCR using oligonucleotide primers targeting a specific region of the 16S rRNA gene for the genus Bifidobacterium and a conserved eubacterial 16S rDNA sequence. The specificity and sensitivity of this detection with a pure culture of B. lactis were, respectively, 100 bacteria/ml after 25 cycles of PCR and 1 to 10 bacteria/ml after a 50-cycle nested-PCR approach.  相似文献   

8.
AIM: To develop real-time quantitative PCR methods, based on the use of probes labelled with a stable fluorescent lanthanide chelate, for the quantification of different human faecal bifidobacterial populations. METHODS AND RESULTS: The designed quantitative PCR assays were found to be specific for the corresponding Bifidobacterium species or groups (Bifidobacterium longum group, Bifidobacterium catenulatum group, Bifidobacterium adolescentis, Bifidobacterium breve, Bifidobacterium angulatum, Bifidobacterium bifidum and Bifidobacterium dentium). The detection limits of the methodologies used ranged between 2 x 10(5) and 9 x 10(3) cells g(-1) of faeces. The applicability of the developed assays was tested by analysing 20 human faecal samples. Bif. longum group was found to be the qualitatively and quantitatively predominant bifidobacterial group. CONCLUSIONS: The real-time PCR procedures developed here are specific, accurate, rapid and easy methods for the quantification of Bifidobacterium groups or species in human faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The developed procedures will facilitate rapid and objective counting of large numbers of samples increasing our knowledge on the role of gut bifidobacterial microbiota in health and disease. This will contribute to the efficient use of intestinal bacterial assays in research, food and pharmaceutical development as well as in the assessment of dietary management of diseases.  相似文献   

9.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

10.
Bifidobacteria are well known for their beneficial effects on health and are used as probiotics in food and pharmaceutical products. As they form one of the most important groups in both human and animal feces, their use as fecal indicator organisms in raw milk products has recently been proposed. Bifidobacteria species isolated in humans are different from those isolated in animals. It should therefore be possible to determine contamination origin (human or animal). A method of detecting the Bifidobacterium genus was developed by PCR targeting the hsp60 gene. The genus Bifidobacterium was identified by PCR amplification of a 217-bp hsp60 gene fragment. The degenerated primer pair specific to the Bifidobacterium genus used was tested for it specificity on 127 strains. Sensitivity was measured on artificially contaminated samples. Food can however be a difficult matrix for PCR testing since it contains PCR inhibitors. So an internal PCR control was used. An artificially created DNA fragment of 315 bp was constructed. The PCR detection method was tested on raw milk and cheese samples and compared with three culture-based methods, which comprised enrichment and isolation steps. The enrichment step used Brain Heart Infusion medium with propionic acid, iron citrate, yeast extract, supplemented with mupirocin (BHMup) or not (BH) and the isolation step used Columbia blood agar medium, supplemented with mupirocin (CMup) or not (C). The method using mupirocin at both enrichment and isolation steps and the PCR method performed from the culture in BHMup enrichment medium were shown to be the most efficient. No significant difference was observed in raw milk samples between PCR from BHMup and the culture-based method BHMup/CMup, while a significant difference was noticed between the same methods in raw milk cheese samples, which would favor using PCR. The results suggested that PCR on the hsp60 gene was convenient for a rapid detection of bifidobacteria in raw milk and raw milk cheese samples and that bifidobacteria always present throughout raw milk cheese production could be efficiently used as fecal indicators.  相似文献   

11.
Burns AJ  Rowland IR 《Mutation research》2004,551(1-2):233-243
Six strains of lactic acid producing bacteria (LAB) were incubated (1 x 10(8)cfu/ml) with genotoxic faecal water from a human subject. HT29 human adenocarcinoma cells were then challenged with the resultant samples and DNA damage measured using the single cell gel electrophoresis (comet) assay. The LAB strains investigated were Bifidobacterium sp. 420, Bifidobacterium Bb12, Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus bulgaricus and Enterococcus faecium. DNA damage was significantly decreased by all bacteria used with the exception of Strep. thermophilus. Bif. Bb12 and Lact. plantarum showed the greatest protective effect against DNA damage. Incubation of faecal water with different concentrations of Bif. Bb12 and Lact. plantarum revealed that the decrease in genotoxicity was related to cell density. Non-viable (heat treated) probiotic cells had no effect on faecal water genotoxicity. In a second study, HT29 cells were cultured in the presence of supernatants of incubations of probiotics with various carbohydrates including known prebiotics; the HT29 cells were then exposed to faecal water. Overall, incubations involving Lact. plantarum with the fructooligosaccharide (FOS)-based prebiotics Inulin, Raftiline, Raftilose and Actilight were the most effective in increasing the cellular resistance to faecal water genotoxicity, whereas fermentations with Elixor (a galactooligosaccharide) and Fibersol (a maltodextrin) were less effective. Substantial reductions in faecal water-induced DNA damage were also seen with supernatants from incubation of prebiotics with Bif. Bb12. The supernatant of fermentations involving Ent. faecium and Bif. sp. 420 generally had less potent effects on genotoxicity although some reductions with Raftiline and Elixor fermentations were apparent.  相似文献   

12.
An enzyme-based assay was developed for the detection of bifidobacteria in infant faeces. Ninety-five samples from 51 breast-fed infants in the age between 3 and 276 days were investigated. Bifidobacteria and other bacterial groups were determined by cultivation and fluorescence in situ hybridisation (FISH). Faecal samples were examined for the activity of fructoso-6-phosphate phosphoketolase (F6PPK) and for other enzymatic reactions using the API-ZYM kit. Twenty-nine infants had high numbers of bifidobacteria (usually higher than 9 log CFU/g) in their faeces. Seventeen infants (35%) did not contain detectable amounts of bifidobacteria in their faecal samples. The remaining five individuals had low counts of bifidobacteria (3-6 log CFU/g). Most negative infants possessed major amounts of clostridia in their faecal flora. There were no significant differences among bifidobacterial counts obtained by cultivation and FISH, detection of F6PPK, alpha-galactosidase and alpha-glucosidase activities could routinely be used for the rapid and simple detection of bifidobacteria in infant faecal samples. Bifidobacterial colonies were identified using enzymatic tests and PCR procedure based on 16S rRNA gene sequences species-specific primers. In 14 samples, the identifications of individual isolates were compared with direct analyses of faeces using the nested PCR-denaturing gradient gel electrophoresis (nested DGGE) procedure. The results obtained in several cases are not identical. Bifidobacterium longum and Bifidobacterium breve were most frequently identified. Bifidobacteria-positive samples had high activities of alpha-galactosidase and alpha-glucosidase. On the contrary, negative samples missed either one or both of these enzymatic activities. While all positive samples tested showed distinctive fructose-6-phosphate phosphoketolase activity (F6PPK), none of the negative samples expressed F6PPK activity.  相似文献   

13.
A highly sensitive quantitative PCR detection method has been developed and applied to the distribution analysis of human intestinal bifidobacteria by combining real-time PCR with Bifidobacterium genus- and species-specific primers. Real-time PCR detection of serially diluted DNA extracted from cultured bifidobacteria was linear for cell counts ranging from 10(6) to 10 cells per PCR assay. It was also found that the method was applicable to the detection of Bifidobacterium in feces when it was present at concentrations of >10(6) cells per g of feces. Concerning the distribution of Bifidobacterium species in intestinal flora, the Bifidobacterium adolescentis group, the Bifidobacterium catenulatum group, and Bifidobacterium longum were found to be the three predominant species by examination of DNA extracted from the feces of 46 healthy adults. We also examined changes in the population and composition of Bifidobacterium species in human intestinal flora of six healthy adults over an 8-month period. The results showed that the composition of bifidobacterial flora was basically stable throughout the test period.  相似文献   

14.
Strain-specific rRNA-targeted primers were designed for the quantitative detection of Bifidobacterium infantis Y1, B. breve Y8 and B. longum Y10 used in a pharmaceutical probiotic product (VSL-3). PCR and real-time PCR techniques with the selected primers were employed for the direct enumeration of the bifidobacteria in the probiotic preparation and for studying their kinetic characteristics in batch cultures. These analysis revealed that B. infantis Y1 was the predominant strain in the probiotic product and that its growth rate was the highest. Since B. infantis Y1, B. breve Y8 and B. longum Y10 are co-cultured during the industrial production of VSL-3, the kinetic characteristics of these strains can explain their different concentrations in the probiotic preparation. A validation of the PCR quantification method was performed by identifying a representative number of isolates from the bacterial mixtures with automated ribotyping. The methodology described represents a useful tool for the specific quantitative detection of bacterial strains and species in complex mixtures such as pharmaceutical preparations, dairy starter cultures, faecal samples and biopsies.  相似文献   

15.
Pure cultures of three species of bifidobacteria (Bifidobacterium longum, Bif. adolescentis and Bif. bifidum), Lactobacillus acidophilus and a mixed culture of Lact. delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus were each enumerated on two differential media and six selective media for the enumeration of bifidobacteria. The appearance of the colonies on the differential media was as expected but when mixed cultures were present, it proved extremely difficult to distinguish one species from another. Of the selective media, AMC, RMS, NPNL and BL-OG performed well in that they gave good recoveries of bifidobacteria and were inhibitory to the growth of Lact. delbrueckii subsp. bulgaricus, Strep. salivarius subsp. thermophilus and Lact. acidophilus. However, of these four media, AMC was most convenient as it is based on a commercially available medium, whereas the others must be made up from individual constituents. The AMC agar is thus a good choice for the routine enumeration of bifidobacteria from mixed cultures.  相似文献   

16.
Bifidobacteria were consistently present in the faeces of both man and pigs but only occasionally in the faeces of cattle and sheep, and they were not isolated from faecal samples from other animals; total counts of bifidobacteria were obtained by membrane filtration with YN-17 medium, a modification of Resnick and Levin's YN-6 medium. Mannitol-fermenting strains of bifidobacteria were isolated from both human and animal faeces, but sorbitol-fermenting strains were obtained only from human samples. These sorbitol-fermenting strains were identified as either Bifidobacterium adolescentis or B. breve and their numbers were obtained by membrane filtration on Human Bifid Sorbitol agar (HBSA). Sorbitol-fermenting bifidobacteria are specific indicators of human faecal pollution of waters and wastewaters.  相似文献   

17.
The species Bifidobacterium lactis, with its main representative strain Bb12 (DSM 10140), is a yoghurt isolate used as a probiotic strain and is commercially applied in different types of yoghurts and infant formulas. In order to ensure the genetic identity and safety of this bacterial isolate, species- and strain-specific molecular tools for genetic fingerprinting must be available to identify isolated bifidobacteria or lactic acid bacteria from, e.g., various clinical environments of relevance in medical microbiology. Two opposing rRNA gene-targeted primers have been developed for specific detection of this microorganism by PCR. The specificity of this approach was evaluated and verified with DNA samples isolated from single and mixed cultures of bifidobacteria and lactobacilli (48 isolates, including the type strains of 29 Bifidobacterium and 9 Lactobacillus species). Furthermore, we performed a Multiplex-PCR using oligonucleotide primers targeting a specific region of the 16S rRNA gene for the genus Bifidobacterium and a conserved eubacterial 16S rDNA sequence. The specificity and sensitivity of this detection with a pure culture of B. lactis were, respectively, 100 bacteria/ml after 25 cycles of PCR and 1 to 10 bacteria/ml after a 50-cycle nested-PCR approach.  相似文献   

18.
Identification of Bifidobacterium species using rep-PCR fingerprinting   总被引:1,自引:0,他引:1  
The aim of the present study was to evaluate the use of repetitive DNA element PCR fingerprinting (rep-PCR) for the taxonomic discrimination among the currently described species within the genus Bifidobacterium. After evaluating several primer sets targeting the repetitive DNA elements BOX, ERIC, (GTG)s and REP, the BOXA1R primer was found to be the most optimal choice for the establishment of a taxonomical framework of 80 Bifidobacterium type and reference strains. Subsequently, the BOX-PCR protocol was tested for the identification of 48 unknown bifidobacterial isolates originating from human faecal samples and probiotic products. In conclusion, rep-PCR fingerprinting using the BOXA1R primer can be considered as a promising genotypic tool for the identification of a wide range of bifidobacteria at the species, subspecies and potentially up to the strain level.  相似文献   

19.
The viability of bifidobacteria in mul-kimchi, a type of kimchi with added water, was investigated under various conditions. When a mul-kimchi preparation was inoculated with five strains of Bifidobacterium at a concentration of 10(7) cfu ml-1, Bif. longum JK-2 showed the highest viability, maintaining a population of 10(6) cfu ml-1 after 1 week at 4 degrees C. The influence of NaCl concentration and initial pH on viability was further investigated in mul-kimchi inoculated with Bif. longum JK-2; NaCl concentrations greater than 3% (w/w) reduced viability considerably. In kimchi started with an initial pH of 6.5, the cells showed the highest survival. When mul-kimchi containing 2% NaCl (w/w) was inoculated with 10(8) cfu ml-1 Bif. longum JK-2, there was a 10-fold reduction in viability during 10 d of incubation at 4 degrees C. These results demonstrate acceptable levels of the organism in the product, suggesting the possible use of selected strains of bifidobacteria in commercial kimchi production.  相似文献   

20.
Three multiplex polymerase chain reactions (PCRs) targeted on Bifidobacterium and related species were designed to identify human species. The selected primers yielded amplified products of various sizes, each specific for a species. Three to four pairs were gathered in one PCR reaction and their specificity under multiplex conditions was confirmed using DNA from 26 reference strains. Using this technique on unidentified faecal strains, B. bifidum, B. longum and B. breve species were commonly recovered in infants while B. adolescentis, B. catenulatum/B. pseudocatenulatum continuum and B. longum species were predominant in adults. Thus, a single PCR can provide the assignment of a strain to one these species, reducing the number of PCR reactions and hands-on time for the identification of human isolates of bifidobacteria. Moreover, this technique is also applicable for the in situ detection of bifidobacteria in DNA extracts from human stools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号