首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shikimate kinase (EC 2.7.1.71) is a committed enzyme in the seven-step biosynthesis of chorismate, a major precursor of aromatic amino acids and many other aromatic compounds. Genes for all enzymes of the chorismate pathway except shikimate kinase are found in archaeal genomes by sequence homology to their bacterial counterparts. In this study, a conserved archaeal gene (gi1500322 in Methanococcus jannaschii) was identified as the best candidate for the missing shikimate kinase gene by the analysis of chromosomal clustering of chorismate biosynthetic genes. The encoded hypothetical protein, with no sequence similarity to bacterial and eukaryotic shikimate kinases, is distantly related to homoserine kinases (EC 2.7.1.39) of the GHMP-kinase superfamily. The latter functionality in M. jannaschii is assigned to another gene (gi591748), in agreement with sequence similarity and chromosomal clustering analysis. Both archaeal proteins, overexpressed in Escherichia coli and purified to homogeneity, displayed activity of the predicted type, with steady-state kinetic parameters similar to those of the corresponding bacterial kinases: K(m,shikimate) = 414 +/- 33 microM, K(m,ATP) = 48 +/- 4 microM, and k(cat) = 57 +/- 2 s(-1) for the predicted shikimate kinase and K(m,homoserine) = 188 +/- 37 microM, K(m,ATP) = 101 +/- 7 microM, and k(cat) = 28 +/- 1 s(-1) for the homoserine kinase. No overlapping activity could be detected between shikimate kinase and homoserine kinase, both revealing a >1,000-fold preference for their own specific substrates. The case of archaeal shikimate kinase illustrates the efficacy of techniques based on reconstruction of metabolism from genomic data and analysis of gene clustering on chromosomes in finding missing genes.  相似文献   

2.
Shikimate kinase (EC 2.7.1.71) catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid in the presence of ATP. As the fifth key step in the shikimate pathway for aromatic amino acid biosynthesis in bacteria, fungi, and plants, but not mammals, shikimate kinase represents an attractive target for the development of new antimicrobial agents, herbicides, and antiparasitic agents. Here, we report the 1.8-Angstroms crystal structure of Helicobacter pylori shikimate kinase (HpSK). The crystal structure shows a three-layer alpha/beta fold consisting of a central sheet of five parallel beta-strands flanked by seven alpha-helices. An HpSK-shikimate-PO(4) complex was also determined and refined to 2.3 Angstroms, revealing induced-fit movement from an open to a closed form on substrate binding. Shikimate is located above a short 3(10) helix formed by a strictly conserved motif (GGGXV) after beta(3). Moreover, several highly conserved charged residues including Asp33 (in a conserved DT/SD motif), Arg57, and Arg132 (interacting with shikimate) are identified, guiding the development of novel inhibitors of shikimate kinase.  相似文献   

3.
Shikimate kinase (SK) is the fifth enzyme in the shikimate pathway and catalyzes the phosphate transfer from ATP to shikimate in generating shikimate 3-phosphate and ADP. SK has been developed as a promising target for the discovery of antibacterial agents. In this report, two small molecular inhibitors (compound 1, 3-methoxy-4-{[2-({2-methoxy-4-[(4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]phenoxy}methyl)benzyl]oxy}benzaldehyde; compound 2, 5-bromo-2-(5-{[1-(3,4-dichlorophenyl)-3,5-dioxo-4-pyrazolidinylidene]methyl}-2-furyl)benzoic acid) against Helicobacter pylori SK (HpSK) were successfully identified with IC(50) values of 5.5+/-1.2 and 6.4+/-0.4 microM, respectively. The inhibition kinetics shows that compound 1 is a noncompetitive inhibitor with respect to both shikimate and MgATP, and compound 2 is a competitive inhibitor toward shikimate and noncompetitive inhibitor with respect to MgATP. The surface plasmon resonance (SPR) technology based analysis reveals that the equilibrium dissociation constants (K(D)s) of compounds 1 and 2 with HpSK enzyme are 4.39 and 3.74 microM, respectively. The molecular modeling and docking of two inhibitors with HpSK reveals that the active site of HpSK is rather roomy and deep, forming an L-shape channel on the surface of the protein, and compound 1 prefers the corner area of L-shape channel, while compound 2 binds the short arm of the channel of SK in the binding interactions. It is expected that our current work might supply useful information for the development of novel SK inhibitors.  相似文献   

4.
Shikimate 5-dehydrogenase (SKDH; EC 1.1.1.25) catalyzes the reversible reduction of 3-dehydroshikimate to shikimate and is a key enzyme in the aromatic amino acid biosynthesis pathway. The shikimate 5-dehydrogenase gene, aroE, from Archaeoglobus fulgidus was cloned and overexpressed in Escherichia coli. The recombinant enzyme purified as a homodimer and yielded a maximum specific activity of 732 U/mg at 87 degrees C (with NADP+ as coenzyme). Apparent Km values for shikimate, NADP+, and NAD+ were estimated at 0.17+/-0.03 mM, 0.19+/-0.01 mM, and 11.4+/-0.4 mM, respectively. The half-life of the A. fulgidus SKDH is 2 h at the assay temperature (87 degrees C) and 17 days at 60 degrees C. Addition of 1 M NaCl or KCl stabilized the enzyme's half-life to approximately 70 h at 87 degrees C and approximately 50 days at 60 degrees C. This work presents the first kinetic analysis of an archaeal SKDH.  相似文献   

5.
Bacillus anthracis has been used as weapon in bioterrorist activities, with high mortality, despite anti-microbial treatment, which strongly indicates a need of new drugs to treat anthrax. Shikimate Pathway is a seven-step biosynthetic route which generates chorismic acid. The shikimate pathway is essential for many pathological organisms, whereas it is absent in mammals. Therefore, these enzymes are potential targets for the development of non-toxic anti-microbial agents and herbicides and have been submitted to intensive structural studies. Shikimate Kinase is the fifth enzyme of shikimate pathway and catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimate using ATP as a co-substrate, resulting in shikimate-3-phosphate and ADP. The present work describes for the first time a structural model for the Shikimate Kinase from B. anthracis using molecular modeling approach and molecular dynamics simulations. This study was able to identify the main residues of the ATP-binding and the shikimate pockets responsible for ligand affinities. Analysis of the molecular dynamics simulations indicates the structural features responsible for the stability of the structure. This study may help in the identification of new inhibitors for this enzyme.  相似文献   

6.
Shikimate kinase, despite low sequence identity, has been shown to be structurally a member of the nucleoside monophosphate (NMP) kinase family, which includes adenylate kinase. In this paper we have explored the roles of residues in the P-loop of shikimate kinase, which forms the binding site for nucleotides and is one of the most conserved structural features in proteins. In common with many members of the P-loop family, shikimate kinase contains a cysteine residue 2 amino acids upstream of the essential lysine residue; the side chains of these residues are shown to form an ion pair. The C13S mutant of shikimate kinase was found to be enzymatically active, whereas the K15M mutant was inactive. However, the latter mutant had both increased thermostability and affinity for ATP when compared to the wild-type enzyme. The structure of the K15M mutant protein has been determined at 1.8 A, and shows that the organization of the P-loop and flanking regions is heavily disturbed. This indicates that, besides its role in catalysis, the P-loop lysine also has an important structural role. The structure of the K15M mutant also reveals that the formation of an additional arginine/aspartate ion pair is the most likely reason for its increased thermostability. From studies of ligand binding it appears that, like adenylate kinase, shikimate kinase binds substrates randomly and in a synergistic fashion, indicating that the two enzymes have similar catalytic mechanisms.  相似文献   

7.
Epidermal growth factor (EGF)-receptor mutants in which individual autophosphorylation sites (Tyr1068, Tyr1148 or Tyr1173) have been replaced by phenylalanine residues were expressed in NIH-3T3 cells lacking endogenous EGF-receptors. Kinetic parameters of the kinase of wild-type and mutant receptors were compared. Both wild-type and mutant EGF-receptors had a Km(ATP) 1-3 microM for the autophosphorylation reaction, and a Km(ATP) of 3-7 microM for the phosphorylation of a peptide substrate. These are similar to the Km(ATP) values reported for EGF-receptor of A431 cells. A synthetic peptide representing the major in vitro autophosphorylation site Tyr1173 of the EGF-receptor (KGSTAENAEYLRV) was phosphorylated by wild-type receptor with a Km of 110-130 microM, and the peptide inhibited autophosphorylation with a Ki of 150 microM. Mutant EGF-receptors phosphorylated the peptide substrate with a Km of 70-100 microM. A similar decrease of Km (substrate) was obtained when the phosphorylation experiments were performed with the commonly applied substrates angiotensin II and a peptide derived from c-src. The Km of angiotensin II phosphorylation was reduced from 1100 microM for wild-type receptor to 890 microM for mutant receptor and for c-src peptide from 1010 microM to 770 microM respectively. The Vmax of the kinase was dependent on receptor concentration, but was not significantly affected by the mutation. Analogs of the Tyr1173 peptide in which the tyrosine residue was replaced by either a phenylalanine or an alanine residue also inhibited autophosphorylation with Ki of 650-750 microM. These analyses show that alterations of individual autophosphorylation sites do not have a major effect on kinase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Shikimate kinase was purified to near homogenity from spinach Spinacia oleracea L. chloroplasts and found to consist of a single 31 kilodalton polypeptide. The purified enzyme was unstable, but could be stabilized by a variety of added proteins, including oxidized and reduced thioredoxins. Whereas the isolated enzyme was stimulated by mono- and dithiol reagents, the enzyme in intact chloroplasts was unaffected by added thiols and showed only minor response to dark/light transitions. These results indicate that the previously reported stimulation of shikimate kinase activity by reduced thioredoxins is due to enzyme stabilization rather than to activation. In the current study, the purified enzyme was inhibited by added ADP and showed a strong response to energy charge. When intact chloroplasts were incubated in the dark in presence of shikimate, phosphoenolpyruvate and a source of ATP (dihydroxyacetone phosphate or ATP itself under appropriate conditions), aromatic amino acids were formed: phenylalanine and tyrosine. The data indicate that energy charge plays a role in regulating shikimate kinase, thereby controlling the shikimate pathway. An unidentified enzyme of the latter part of the pathway, leading from shikimate-3-phosphate to phenylalanine, appears to be activated by light.  相似文献   

9.
In Bacillus subtilis shikimate kinase enzyme activity can be demonstrated when a small polypeptide forms a trifunctional complex with the bifunctional enzyme 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase-chorismate mutase. The shikimate kinase polypeptide whoch carries the catalytic site has been purified to homogeneity by a five-step procedure. The skikimate kinase was determined to have a molecular weight of 10,000 by superfine Sephadex G-75 thin layer chromatography and by calculation of the minimum chemical molecular weight from its amino acid composition. This number corresponds closely to the molecular weight determined by the mobility of the protein following electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate. The enzyme aggregates with itself forming larger molecular weight proteins. Thes aggregational pattersn depend on protein concentration and sulfhydryl bridges. The enzyme activity is completely inhibited by EDTA and the requirement for Mg2+ can be partially replaced by Mn2+, Ca2+, and Co2+. The inhibition of shikimate kinase activity by p-hydroxymercuribenzoate is reversed completely when the enzyme complex is treated with dithiothreitol, suggesting the sulfhydryl groups may be involved with the active site. The trifunctional complex is relatively unstable, and the nonidentical subunits dissociate readily. This dissociation results in a 99% loss in shikimate kinase activity and a 30% decrease in the chorismate mutase-DAHP synthetase activities. Shikimate kinase activity is subject to a variety of controls. It is inhibited by the allosteric effectors chorismate and prephenate, the products of the reaction, ADP, and shikimate 5-phosphate. The activity responds to changes in the energy charge of the cell. Because of the variety of controls exerted on this enzyme, this member of the regulatory complex may represent the key enzyme in the allosteric control of the synthesis of the common precursors of aromatic acid synthesis.  相似文献   

10.
During 6-week training of rats the activity of isoenzymes I and II of soluble 3':5'-AMP-dependent protein kinase increases by 22 and 33%, respectively. A long-term physical load does not cause any significant changes in the activity of both isoenzymes. The maximal activity of the isoenzymes from skeletal muscles of the control and experimental rats is observed at the same concentrations of 3':5'-AMP and pH of 6,0-6,5. During training and under physical load the apparent Km values for ATP of both isoenzymes of 3':5'-AMP-dependent protein kinase do not change significantly, whereas that of V shows an increase. The apparent Km and V values for the histone increase for isoenzyme I obtained from skeletal muscles of trained rats both at rest and under physical load. In case of isoenzyme II the Km value for the histone decreases, while that of V remains unchanged. The changes in the properties of isoenzymes I and II of 3':5'-AMP-dependent protein kinase from skeletal muscles suggest the participation of the enzyme in adaptation to systematic muscular activity.  相似文献   

11.
12.
cAMP-dependent protein kinase was compared in normal and Rous Sarcoma Virus transformed chicken embryo fibroblasts. Total cAMP binding activity and cAMP-dependent histone kinase activity were unaltered by RSV transformation. The apparent Km for activation of histone kinase activity by cAMP was 35 nM in both normal and transformed cells. Using 8-N3-cAMP photoaffinity labeling, normal and transformed cells were also found to contain equal quantities of a single 42,000 Mr regulatory sub-unit isoenzyme of A-kinase. This isoenzyme corresponded to the lower molecular weight isoenzyme of the two enzymes found in normal chicken skeletal muscle. Both avian isoenzymes were about 4,000 Mr smaller than the corresponding bovine type I and type II regulatory subunits. Rous Sarcoma Virus transformation does not directly alter the amount or activity of cAMP-dependent protein kinase.  相似文献   

13.
Tyrosine protein kinase activity was measured in membranes from DMBA-induced mammary tumors, with Angiotensin II as substrate. The apparent Km for the peptide was 3.3 mM. This enzymatic activity is inhibited by Ca+2; Mn+2 can replace Mg+2 with an increase in the Km for ATP from 47 /microM to 172 microM. The enzymatic activity was not affected by cyclic AMP but was inhibited in dose dependent manner by quercetin, a bioflavonoid which is known to inhibit proliferation of malignant cells in vitro.  相似文献   

14.
In this study we show that Vitellin (VT) phosphorylation in chorionated oocytes of Rhodnius prolixus is completely inhibited by heparin (10 microg/ml), a classical casein kinase II (CK II) inhibitor. VT phosphorylation is not affected by modulators of cyclic nucleotide-dependent protein kinases such as c-AMP (10 microM), H-8 (1 microM) and H-89 (0.1 microM). We have obtained a 3000-fold VT-free enriched preparation of CK II. Autophosphorylation of this enzyme preparation in the presence of (32)P-ATP demonstrated that it lacks any endogenous substrates. Rhodnius CK II is strongly inhibited by heparin (Ki = 9 nM) and uses ATP (Km = 36 microM) or GTP (Km = 86 microM) as phosphate donors. Incubation of VT with purified Rhodnius CK II and (32)P-ATP led to the incorporation of 2 mols of phosphate/mol VT. However, the total number of phosphorylation sites available can be altered by previous incubation of VT with alkaline phosphatase. These data show that an insect yolk protein contain phosphorylation sites for a cyclic nucleotide-independent protein kinase such as CK II.  相似文献   

15.
16.
Glyphosate Tolerance in Tobacco (Nicotiana tabacum L.)   总被引:2,自引:1,他引:1       下载免费PDF全文
A glyphosate-tolerant tobacco cell line, Nicotiana tabacum L. Indiana (I7), was selected from the glyphosate-sensitive Wisconsin 38 (W38) line through a single step exposure to the herbicide. Tolerance and growth characteristics of I7 cells were the same for cells maintained for more than 1 year in the presence or absence of glyphosate. Glyphosate tolerance levels were constant through the growth cycle. Tolerance is not due to reduced uptake of glyphosate. Shikimate levels in I7 and W38 cells maintained in glyphosate-free medium were similar, whereas W38 cells accumulated 46 times more shikimate than I7 cells, when cells of both lines were exposed to the herbicide. Glyphosate treatment caused increased levels of aromatic amino acids in W38 cells and slightly lower levels in I7 cells. Specific activities of dehydroquinate synthase, shikimate dehydrogenase, and shikimate kinase were similar in the two cell types, whereas DAHP synthase and EPSP synthase specific activities were elevated in I7 cells. Plants regenerated from I7 cells retained tolerance to glyphosate.  相似文献   

17.
The relationship of the kinase which co-purifies with caldesmon to Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) was investigated by studying the phosphorylation of bovine brain synapsin I, as well-characterized substrate of CaM-kinase II. Synapsin I is a very good substrate (Km = 90 nM) of the co-purifying kinase, which phosphorylates two sites in synapsin I, both of which are distinct from the single site phosphorylated by cyclic-AMP-dependent protein kinase. Phosphorylation of synapsin I is Ca2(+)- and calmodulin-dependent: half-maximal activation occurs at 0.13 microM-Ca2+ and maximal activity at 0.4 microM-Ca2+. Phosphorylation of the co-purifying kinase slightly enhances the rate, but does not alter the stoichiometry, of subsequent synapsin I phosphorylation; it does, however, circumvent the requirement for Ca2+ and calmodulin. The properties of this kinase therefore closely resemble those of CaM-kinase II, and we conclude that it is probably a smooth-muscle isoenzyme of CaM-kinase II.  相似文献   

18.
Casein kinase II and ornithine decarboxylase were purified from a virally-transformed macrophage-like cell line, RAW264. The addition of casein kinase II to a reaction mixture containing [tau-32P]GTP, Mg++, and ornithine decarboxylase led to the phosphorylation of a 55,000 dalton protein band in the purified preparation of ornithine decarboxylase. Stoichiometric estimates indicated that casein kinase II incorporated 0.15 mole of phosphate per mole of ornithine decarboxylase, which was increased to 0.3 mole/per mole in the presence of spermine. The apparent Km and Vmax values for the casein kinase II-mediated phosphorylation of ornithine decarboxylase were 0.36 microM and 62.5 nmol/min./mg kinase. The addition of spermine to the reaction did not alter the Km but increased the Vmax to 100 nmol/min./mg kinase. The phosphorylation of ornithine decarboxylase by casein kinase II affected neither the rate of maximal ornithine decarboxylase activity nor the affinity of the enzyme for ornithine.  相似文献   

19.
The catalytic alpha subunit of casein kinase II contains the 11 conserved domains characteristic of all protein kinases. Domain II and VII are involved in nucleotide binding and phosphotransfer. Two residues of the alpha subunit, Val-66 (in domain II) and Trp-176 (in domain VII), were changed to Ala-66 and Phe-176, the residues present in more than 95% of the identified protein kinase sequences. These changes altered the selectivity of the alpha subunit for ATP and GTP. The Ala-66 mutant showed an increase in the Km value for GTP from 45 to 71 microM, while the Km value for ATP decreased from 13 to 9 microM. The Km value for ATP with the Phe-176 mutant showed a decrease from 13 to 7 microM. A double mutant of Ala-66/Phe-176 showed the combined effects, with a Km of 6 microM for ATP and 70 microM for GTP. Alteration of Trp-176 to Lys-176, an amino acid which is not present in the corresponding position of any known protein kinase, resulted in a lack of phosphotransferase activity. The mutations, Val-66 to Ala-66 and Trp-176 to Phe-176, also altered the interaction of the alpha subunit with the regulatory beta subunit. In contrast to the wild-type alpha subunit, which was stimulated 4-fold by addition of the beta subunit, the Ala-66 and Ala-66/Phe-176 mutants were not stimulated by the beta subunit, while the Phe-176 mutant was stimulated only 2.5-fold. All of the reconstituted holoenzymes were similar in molecular weight to the native holoenzyme. The stimulation of the phosphotransferase activity toward beta-casein B by spermine and polylysine, which is mediated by the beta subunit, was similar for holoenzymes reconstituted with either wild-type or mutant alpha subunits. Therefore, binding of the beta subunit appears to alter the active site of the alpha subunit directly or indirectly by inducing a conformational change. Ala-66 and Phe-176 mutations appear to change the structure of the alpha subunit sufficiently so that interaction of the subunits is altered and the stimulatory effect of the beta subunit is reduced or eliminated.  相似文献   

20.
Mammalian brain phosphoproteins as substrates for calcineurin   总被引:16,自引:0,他引:16  
Calcineurin, a Ca2+/calmodulin-dependent phosphoprotein phosphatase found in several tissues, is highly concentrated in mammalian brain. In an attempt to identify endogenous brain substrates for calcineurin, kinetic analyses of the dephosphorylation of several well-characterized phosphoproteins purified from brain were performed. The proteins studied were: G-substrate, a substrate for cyclic GMP-dependent protein kinase; DARPP-32, a substrate for cyclic AMP-dependent protein kinase; Protein K.-F., a substrate for a cyclic nucleotide- and Ca2+-independent protein kinase; and synapsin I, a substrate for cyclic AMP-dependent (site I) and a Ca2+/calmodulin-dependent protein kinase (site II). Calcineurin dephosphorylated each of these proteins in a Ca2+/calmodulin-dependent manner. Similar Km values were obtained for each substrate: G-substrate, 3.8 microM; DARPP-32, 1.6 microM; Protein K.-F., approximately 3 microM (S0.5); synapsin I (site I), 7.0 microM; synapsin I (site II), 4.4 microM. However, significant differences were obtained for the maximal rates of dephosphorylation. The kcat values were: G-substrate, 0.41 s-1; DARPP-32, 0.20 s-1; Protein K.-F., 0.7 s-1; synapsin I (site I), 0.053 s-1; synapsin I (site II), 0.040 s-1. Comparisons of the catalytic efficiency (kcat/Km) for each substrate indicated that DARPP-32, G-substrate, and Protein K.-F. are all potential substrates for calcineurin in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号