首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human endothelial progenitor cells (hEPCs) derived from bone marrow play a crucial in the prevention of ischemic injuries in the course of postnatal neovasculogenesis. Frequent fish oil (FO) consumption is reportedly associated with a significantly lower incidence of cardiovascular disease. However, the molecular mechanisms of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) are not well elucidated, and the beneficial effect of FO consumption on neovasculogenesis has not been demonstrated yet. In the current study, we investigated the effects of EPA/DHA and FO consumption on neovasculogenesis by using vascular tube formation assay, Western blotting, real-time polymerase chain reaction, immunohistochemical staining and Doppler imaging in both in vitro and in vivo models. The results demonstrate that EPA and DHA dose-dependently enhance the neovasculogenesis and cell migration of hEPCs in vitro. The mechanisms of action included up-regulation of the c-kit protein as well as the phosphorylation of the ERK1/2, Akt and endothelial nitric oxide synthase signaling molecules in hEPCs. Furthermore, EPA significantly suppressed the expression of microRNA 221 in vitro. In experimental animal models, FO consumption significantly induced the formation of new blood vessels (neovasculogenesis) and prevented ischemia. Taken together, it is suggested that FO consumption enhances neovasculogenesis mainly through the effects of EPA in hEPCs, thereby exerting a preventive effect against ischemic injury.  相似文献   

2.
In the experiments performed in 108 dogs, structure of the vascular bed, elongated by means of Ilizarov's apparatus in the extremity pelvic segment, has been studied, as well as the hemostatic system under various regimens of distraction. Under a spare regimen reorientation of the microcirculatory bed links and its neural apparatus according to the lines of tension and distension forces are revealed, as well as new formation and growth of capillaries, nerve fibers and terminals. In the vessels of the muscular type, at the level of the osseous regenerate, the following changes are described: distractive rearrangement and intercalated growth (such as activation of biosynthetic processes in endothelium, adventitium and smooth muscle (SMC) cells), intensive proliferation and longitudinal reorientation of the activated SMC in the middle tunic, in the larger arteries a powerful longitudinal muscular layer is formed between the endothelium and the internal elastic membrane. The tendency for hypercoagulation, that exists at that time, is compensated by antithrombogenic and fibrinolitic blood activity. Under an elevated rate of the distraction or under an unstable fixation of the bone fragments in the apparatus, hypercoagulation is not compensated till the end of the experiment, and in the vessels, simultaneously with the distractive rearrangement, thrombosis, recalibration and obliteration are observed. The data observed and those of the literature, demonstrate that vascular adaptation to a dosed distraction is performed by means of certain rearrangements in the walls and of intercalated growth influenced by the effect of the distension forces. These phenomenon make the base of the mechanisms developing in the organism during its evolution and ontogenesis.  相似文献   

3.
During early human embryonic development, blood vessels are stimulated to grow, branch, and invade developing tissues and organs. Pluripotent human embryonic stem cells (hESCs) are endowed with the capacity to differentiate into cells of blood and lymphatic vessels. The present study aimed to follow vasculogenesis during the early stages of developing human vasculature and to examine whether human neovasculogenesis within teratomas generated in SCID mice from hESCs follows a similar course and can be used as a model for the development of human vasculature. Markers and gene profiling of smooth muscle cells and endothelial cells of blood and lymphatic vessels were used to follow neovasculogenesis and lymphangiogenesis in early developing human embryos (4-8 weeks) and in teratomas generated from hESCs. The involvement of vascular smooth muscle cells in the early stages of developing human embryonic blood vessels is demonstrated, as well as the remodeling kinetics of the developing human embryonic blood and lymphatic vasculature. In teratomas, human vascular cells were demonstrated to be associated with developing blood vessels. Processes of intensive remodeling of blood vessels during the early stages of human development are indicated by the upregulation of angiogenic factors and specific structural proteins. At the same time, evidence for lymphatic sprouting and moderate activation of lymphangiogenesis is demonstrated during these developmental stages. In the teratomas induced by hESCs, human angiogenesis and lymphangiogenesis are relatively insignificant. The main source of blood vessels developing within the teratomas is provided by the murine host. We conclude that the teratoma model has only limited value as a model to study human neovasculogenesis and that other in vitro methods for spontaneous and guided differentiation of hESCs may prove more useful.  相似文献   

4.
Lymphatic vessels, the second vascular system of higher vertebrates, are indispensable for fluid tissue homoeostasis, dietary fat resorption and immune surveillance. Not only are lymphatic vessels formed during fetal development, when the lymphatic endothelium differentiates and separates from blood endothelial cells, but also lymphangiogenesis occurs during adult life under conditions of inflammation, wound healing and tumour formation. Under all of these conditions, haemopoietic cells can exert instructive influences on lymph vessel growth and are essential for the vital separation of blood and lymphatic vessels. LECs (lymphatic endothelial cells) are characterized by expression of a number of unique genes that distinguish them from blood endothelium and can be utilized to drive reporter genes in a lymph endothelial-specific fashion. In the present paper, we describe the Prox1 (prospero homeobox protein 1) promoter-driven expression of the fluorescent protein mOrange2, which allows the specific intravital visualization of lymph vessel growth and behaviour during mouse fetal development and in adult mice.  相似文献   

5.
Tumor growth requires the formation of new blood vessels by endothelial cells. Thus, surface molecules -- such as angiogenin receptors -- that are selectively expressed on growing endothelium represent an attractive target for directed delivery of compounds to tumor tissue. We attempted to obtain genetically engineered retroviral vectors targeted to the endothelium by inserting the human angiogenin sequence into Moloney murine leukemia virus envelope glycoprotein. Abundant expression of the chimeric protein could be verified. However, while being selective for proliferating human endothelial cells, the recombinant retroviral particles displayed low transduction efficiencies and thus have to be further improved.  相似文献   

6.
Now sireos problem of pulmonology there are the diseases connected with infringement of coordinated regulation of a tone of smooth muscles of vessels and airways of ways that conducts to dissociation of parameters haemodinamyc and ventilation of lungs and as consequence, to infringement airwave-perfusion attitudes. In the review features humoral regulation contractile activity of smooth muscles of vessels of a small circle of blood circulation, a role of endocellular alarm systems in these mechanisms, and endothelium, as the local modulator endocrine functions are considered. Disgusting muscles of a small circle are distinguished from the main vessels of the big circle of blood circulation with predisposition to the raised mechanical pressure. In spite of the fact that endothelium renders modulating relaxe influence on contractile answers of smooth muscles of vessels of a venous and arterial small circle of blood circulation at action corresponding vasoconstriction, pulmonary veins are capable to endothelium-dependent dilatation to a lesser degree, in comparison with pulmonary arteries. And, on the contrary, in absence endothelium, they are characterized with high sensitivity to vasopression to substances--serotonin, histamine, phenylephrine. Features of regulation smooth muscle pressure pulmonary an artery are shown in contractile reactions of its isolated segments in reply to influence beta-adreno agonist--isoprotherenol and phosphoesterase inhibitors. Though, increase in endocellular concentration cyclic nucleotides (cAMP and\or cGMP), on the standard representations, cannot explain growth of a mechanical pressure of smooth muscles, apparently, in contractile reactions of a pulmonary artery to influence biologically and physiologically active substances interfere more complex mechanisms in which basis processes of interaction of smooth muscles cells lay, endothelium and cells of a microenvironment. Finding-out of the contribution cyclic nucleotides in these processes demands the further researches.  相似文献   

7.
The process of angiogenesis plays a pivotal role in embryogenesis, wound healing, and tumorigenesis through the growth of new blood vessels from pre-existing vasculature. Among the angiogenic factors recently identified as specific for vascular endothelium are the angiopoietins. In depth characterization of the angiopoietins has allowed investigators to better understand the molecular basis of blood vessel formation and vascular endothelial cell function. In this review, we describe angiopoietins and related family members, with particular emphasis on a recently identified protein known as angioarrestin. Our investigations clearly demonstrate that angioarrestin is an anti-angiogenic molecule. The effects of angioarrestin on tumor cell progression and specific aspects of the angiogenic cascade in in vitro models are further discussed.  相似文献   

8.
Information about embryonic development of coronary endothelium is the main clue for the creation of new methods in tissue engineering for treatment of ischemic heart diseases. The purpose of the research was to describe human coronary vessels development on early stages of the prenatal ontogenesis. The first step in human coronary vessels development is the formation of endothelium de novo by transformation of some epicardial and, possibly, endocardial cells. The next step is the ingrowth of sinus venosus endothelium in subepicardium over ventricles and atria, which gives rise to the coronary vessels. Only after 7 days does the primitive coronary plexus of the heart communicate with aorta (third step). During this period, some subepicardial vessels invade myocardium and some intramyocardial vessels contact with the heart cavity. Such intercommunications could help in regulation of blood circulation in primitive coronary plexus before establishment of effective contacts between arterial and venous vessels—excess of blood could be discharged directly into the heart cavity. Additional population of CD34+ cells were revealed inside condensed mesenchyme of the conotruncus; it participates in the formation of vasa vasorum in the aorta. Epicardium and sinus venosus generate endothelium of coronary vessels by neovasculo- and angiogenesis, respectively. During a week after ingrowth of vessels from SV and before their ingrowth to the aorta, ventriculo-coronary communications could be found in the heart.  相似文献   

9.
Peculiarities of the microangioarchitectonics in the trunks, intermediate and terminal villi of the placenta have been described at a noncomplicated pregnancy. Signs of neovasculogenesis are demonstrated in the microcirculatory bed of the terminal villi. Possible connection between reduction of the paravasal capillary network, as the intermediate villi become mature, and neovasculogenesis is discussed.  相似文献   

10.
Integrins and angiogenesis: a sticky business   总被引:11,自引:0,他引:11  
From an evolutionary point of view, the development of a cardiovascular system allowed vertebrates to nourish the several organs that compose their wider multicellular organism and to survive. Acquisition of new genes encoding for extracellular matrix (ECM) proteins and their cognate integrin receptors as well as secreted pro- and anti-angiogenic factors proved to be essential for the development of vascular networks in the vertebrate embryo. Postnatal tissue neo-vascularization plays a key role during wound healing and pathological angiogenesis as well. There is now clear evidence that building blood vessels in the embryo and in the adult organism relies upon different endothelial integrins and ECM ligands. A successful vascular development depends on fibronectin and its major receptor alpha5beta1 integrin, but not on alphavbeta3, alphavbeta5, and alpha6beta4 integrins that are instead central regulators of postnatal tumor angiogenesis. Here, endothelial alphavbeta3 elicits anti- or pro-angiogenic signals depending respectively on whether it is occupied by a soluble (e.g. type IV collagen derived tumstatin) or an insoluble (vitronectin) ECM ligand. The laminin-5 receptor alpha6beta4 integrin, expressed only by endothelial cells of mature blood vessels, controls the invasive phase of tumor angiogenesis in the adult organism. Finally, regulation of vascular morphogenesis relies upon the fine modulation of integrin activation by chemoattractant and chemorepulsive cues, such as angiogenic growth factors and semaphorins.  相似文献   

11.
Nitric oxide (NO) has been demonstrated to play an important role in angiogenesis, and also to be involved in collateral vessel growth. The expression of endothelial NO synthase (eNOS) is moderated partly by blood flow-induced mechanical factors, i.e., shear stress. The purpose of this study was to evaluate how the expression of eNOS correlates with the development of collateral vessels in dog heart, induced by chronic occlusion of the left circumflex artery. Immunoconfocal microscopy using an antibody against eNOS was used to detect expression of eNOS in different stages of arteriogenesis. Collateral vessels were classified into normal, growing and mature vessels by using the cytoskeleton marker desmin. Expression of the growth factors bFGF and metallproteinase-2 (MMP-2) was also examined. The data show that in normal arteriolar vessels, expression of eNOS is very low, but in growing collateral vessel there is a 6.2-fold increase, which, however, returned to normal levels in mature collateral vessels. The expression of eNOS was localized only in endothelium, either in normal or growing vessels. bFGF was very weakly stained in normal vessels, but highly expressed in growing collateral vessels. MMP-2 was strongly stained in neointima, but very weak in endothelium. In addition, we also examined expression of iNOS because iNOS may be induced in vessel injury or in disease states, but it was not detected in either normal or growing collateral vessels. Our findings indicate that the expression pattern of eNOS is closely associated with the development of collateral vessels, suggesting that eNOS plays an important role in arteriogenesis.  相似文献   

12.
Tumor growth and metastasis are critically dependent on the formation of new blood vessels. The present study found that extracellular matrix protein 1 (ECM1), a newly described secretory glycoprotein, promotes angiogenesis. This was initially suggested by in situ hybridization studies of mouse embryos indicating that the ECM1 message was associated with blood vessels and its expression pattern was similar to that of flk-1, a recognized marker for endothelium. More direct evidence for the role of ECM1 in angiogenesis was provided by the fact that highly purified recombinant ECM1 stimulated the proliferation of cultured endothelial cells and promoted blood vessel formation in the chorioallantoic membrane of chicken embryos. Immunohistochemical staining with specific antibodies indicated that ECM1 was expressed by the human breast cancer cell lines MDA-435 and LCC15, both of which are highly tumorigenic. In addition, staining of tissue sections from patients with breast cancer revealed that ECM1 was present in a significant proportion of primary and secondary tumors. Collectively, the results of this study suggest that ECM1 possesses angiogenic properties that may promote tumor progression.  相似文献   

13.
14.
Regulation of angiogenesis-expression of VEGF receptors]   总被引:1,自引:0,他引:1  
I Morita 《Human cell》1998,11(4):215-220
Angiogenesis, the formation of new blood vessels from pre-existing endothelium, is a crucial process for tumor growth, metastasis and inflammation. Therefore, it is focused on the anti-tumor therapy to prohibit angiogenesis in animal model and clinical studies. Eicosapentaenoic acid (EPA 20: 5,n-3) can restrain tumor growth and inflammation. In this paper, we examined the effects of EPA on tube formation. In EPA-pretreated endothelial cells angiogenesis was attenuated and also proliferation induced by VEGF, but not by b-FGF, was suppressed. The reason why EPA suppressed endothelial cell proliferation induced by VEGF was that EPA selectively inhibited the expression of KDR. As we mentioned, the regulation of angiogenesis in vivo may be involved in the expression of VEGF receptors.  相似文献   

15.
Two mechanisms account for the formation of blood vessels, vasculogenesis and angiogenesis. Unfortunately, the terms vasculogenesis and angiogenesis literally have the same meaning, i.e., the genesis of blood vessels, and thus do little to distinguish between the two processes. Despite the nomenclature, the two processes are clearly distinct. Vasculogenesis, the de novo formation of blood vessels from mesoderm, is driven by the recruitment of undifferentiated mesodermal cells to the endothelial lineage and the de novo assembly of such cells into blood vessels. Angiogenesis is the generation of new blood vessels from endothelial cells of existing blood vessels, a process driven by endothelial cell proliferation. Recent years have seen dramatic changes in our understanding of the process of vasculogenesis, expanding the scope of its occurrence beyond the earliest stages of development to include involvement in neovascular processes throughout development as well as in the adult. In this review, emphasis is placed on discussion of emerging perspectives on the process of vasculogenesis in both the embryo and the adult.  相似文献   

16.
During embryogenesis, the development and differentiation of the eye requires the concomitant formation of the neural/glial elements along with a dense vascular network. The adult neural retina is supported by two distinct vascular systems, the proper retinal vessels and the choroidal vessels. The two beds differ not only in their pattern of embryonic differentiation, but also in their function in the adult organism. The retinal vasculature has barrier properties similar to those observed in the brain, whereas the choroidal vessels display a highly fenestrated phenotype. The hyaloid vasculature is a transient embryonic vascular bed which is complete at birth in mammals and regresses contemporaneously with the formation of the retinal vasculature. The dependence of the retina on its blood supply makes it highly vulnerable to any vascular changes and indeed ocular diseases, such as proliferative retinopathy, age-related macular degeneration and the hyperplastic primary vitreous, which are associated with abnormalities of the different vascular beds of the eye. A number of factors have been implicated in developmental and pathological changes in vessel formation and regression, including fibroblast growth factors, platelet-derived endothelial growth factor and vascular endothelial growth factor, among others. The purpose of this review is to describe and discuss new insights into the mechanisms and molecular cues involved in the development of the normal and pathological vascular systems of the eye. The characterization of the molecules and cell-cell interactions involved in the formation, stabilization and regression of new vessels has led to the identification of potential control points for therapeutic intervention.  相似文献   

17.
Role of VEGF-A in vascularization of pancreatic islets   总被引:17,自引:0,他引:17  
Blood vessel endothelium has been recently shown to induce endocrine pancreatic development. Because pancreatic endocrine cells or islets express high levels of vascular endothelial growth factors, VEGFs, we investigated the role of a particular VEGF, VEGF-A, on islet vascularization and islet function. By deleting VEGF-A in the mouse pancreas, we show that endocrine cells signal back to the adjacent endothelial cells to induce the formation of a dense network of fenestrated capillaries in islets. Interestingly, VEGF-A is not required for the development of all islet capillaries. However, the few remaining capillaries found in the VEGF-A-deficient islets are not fenestrated and contain an unusual number of caveolae. In addition, glucose tolerance tests reveal that the VEGF-A-induced capillary network is not strictly required for blood glucose control but is essential for fine-tuning blood glucose regulation. In conclusion, we speculate that islet formation takes place in two sequential steps: in the first step, signals from blood vessel endothelium induce islet formation next to the vessels, and in the second step, the islets signal to the endothelium. The second step involves paracrine VEGF-A signaling to elaborate the interaction of islets with the circulatory system.  相似文献   

18.
Angiogenesis is a complicated process, which is regulated by numerous cytokines and growth factors. Besides, the interaction of endothelial cells with extracellular matrix components, with other cell types and with each other is essential for the formation on new blood vessels. The initiation, continuation and completion of angiogenesis depend on the balance of pro- and antiangiogenic factors in the endothelium microenvironment. Factors that influence endothelial cell proliferation are necessary for vascular development and their normal functioning. The influence of new pharmaceutical agents on angiogenesis is commonly evaluated by results of in vivo assays, i.e. chick chorioallantoic membrane and rabbit cornea assays. However, reported results are not always objective. So, the aim of our study was to elaborate methods of estimation of endothelial cell proliferation as one of important stages of angiogenesis.  相似文献   

19.
Neovascularization in cancer or retinopathy is driven by pathological changes that foster abnormal sprouting of endothelial cells. Mouse genetic studies indicate that the stress-induced small GTPase RhoB is dispensable for normal physiology but required for pathogenic angiogenesis. In diabetic retinopathy, retinopathy of prematurity (ROP) or age-related wet macular degeneration (AMD), progressive pathologic anatomic changes and ischemia foster neovascularization are characterized by abnormal sprouting of endothelial cells. This process is driven by the angiogenic growth factor VEGF, which induces and supports the formation of new blood vessels. While injectable biologics targeting VEGF have been used to treat these pathological conditions, many patients respond poorly, prompting interest in other types of mechanism-based therapy. Here we report the preclinical efficacy of a monoclonal antibody that specifically targets RhoB, a signaling molecule that is genetically dispensable for normal physiology but required for pathogenic retinal angiogenesis. In murine models of proliferative retinal angiogenesis or oxygen-induced retinopathy, administering a monoclonal RhoB antibody (7F7) was sufficient to block neoangiogenesis or avascular pathology, respectively. Our findings offer preclinical proof of concept for antibody targeting of RhoB to limit diabetic retinopathy, ROP or wet AMD and perhaps other diseases of neovasculogenesis such as hemangioma or hemangiosarcoma nonresponsive to existing therapies.  相似文献   

20.
Nitric oxide (NO) has been demonstrated to play an important role in angiogenesis, and also to be involved in collateral vessel growth. The expression of endothelial NO synthase (eNOS) is moderated partly by blood flow-induced mechanical factors, i.e., shear stress. The purpose of this study was to evaluate how the expression of eNOS correlates with the development of collateral vessels in dog heart, induced by chronic occlusion of the left circumflex artery. Immunoconfocal microscopy using an antibody against eNOS was used to detect expression of eNOS in different stages of arteriogenesis. Collateral vessels were classified into normal, growing and mature vessels by using the cytoskeleton marker desmin. Expression of the growth factors bFGF and metallproteinase-2 (MMP-2) was also examined. The data show that in normal arteriolar vessels, expression of eNOS is very low, but in growing collateral vessel there is a 6.2-fold increase, which, however, returned to normal levels in mature collateral vessels. The expression of eNOS was localized only in endothelium, either in normal or growing vessels. bFGF was very weakly stained in normal vessels, but highly expressed in growing collateral vessels. MMP-2 was strongly stained in neointima, but very weak in endothelium. In addition, we also examined expression of iNOS because iNOS may be induced in vessel injury or in disease states, but it was not detected in either normal or growing collateral vessels. Our findings indicate that the expression pattern of eNOS is closely associated with the development of collateral vessels, suggesting that eNOS plays an important role in arteriogenesis. (Mol Cell Biochem 264: 193–200, 2004)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号