首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The proton gradient across mycoplasma membranes was determined by using different probes which distribute between the intracellular space and the suspension medium in response to a transmembrane proton gradient. The intracellular pH of intact glycolyzing mycoplasmas was generally more alkaline than the extracellular medium: pHext=7 and pHint=7.4; hence, pH=0.4. The size of the proton gradient depended upon the extracellular pH. Without nutrient substrate, the mycoplasmas were unable to maintain a transmembrane proton gradient, i.e., pH approximated O.N, N-dicyclohexylcarbodiimide, an inhibitor of membrane-bound ATPase, carbonyl cyanide-m-chlorophenyl hydrazone, a proton conductor, and gramicidin, an antibiotic forming cation conduction channels across membranes, strongly affected and even abolished the proton gradient across mycoplasma membranes. These substances also impaired the metabolic activity and viability of mycoplasmas.  相似文献   

4.
B Fuks  F Hombl 《Plant physiology》1996,112(2):759-766
Electrical measurements were carried out to investigate the contribution of chloroplast lipids to the passive proton permeability of both the thylakoid and inner-envelope membranes. Permeability coefficient and conductance to protons were measured for solvent-free bilayers made from monogalactosyldiglyceride:digalactosyldiglycerid: sulfoquinovosyldiglyceride:phosphatidylglycerol (2:1:0.5:0.5, w/w) in the presence of a pH gradient of 7.4/8.1. The permeability coefficient for protons in glycolipids was 5.5 +/- 1.1 x 10(-4) cm s-1 (n = 14). To determine whether this high H+ permeability could be explained by the presence of lipid contaminants such as weak acids, we investigated the effects of (a) bovine serum albumin, which can remove some amphiphilic molecules such as free fatty acids, (b) 6-ketocholestanol, which increases the membrane dipole potential, (c) oleic acid, and (d) chlorodecane, which increases the dielectric constant of the lipid bilayer. Our results show that free fatty acids are inefficient protonophores, as compared with carbonylcyanide-m-chlorphenythydrazone, and that the hypothesis of a weak acid mechanism is not valid with glycolipid bilayers. In the presence of deuterium oxide the H+ conductane was reduced significantly, indicating that proton transport through the glycolipid matrix could occur directly by a hydrogen bond process. The passive transport of H+ through the glycolipid matrix is discussed with regard to the activity of the thylakoid ATP synthase and the inner-envelope H(+)-ATPase.  相似文献   

5.
6.
The effects of dicyclohexylcarbodiimide, a potent inhibitor of chloroplast ATPase, on the light-induced electric potential changes in intact chloroplasts of Peperomia metallica and of a hornwort Anthoceros sp. were investigated by means of glass microcapillary electrodes. The characteristics of potential changes induced by flashes or continuous light in chloroplasts of both species are similar except for the phase of potential rise in continuous light, which is clearly biphasic in Anthoceros chloroplasts. Dicyclohexylcarbodiimide at concentration 5 · 10−5 M completely abolishes the transient potential undershoot in the light-off reaction but has little effect on the peak value of the photoelectric response. The membrane conductance in the light and in the dark was tested by measuring the decay kinetics of flash-generated potential in dark-adapted and preilluminated chloroplasts. In the absence of dicyclohexylcarbodiimide, preillumination causes a significant acceleration of the potential decay. The light-induced changes in the decay kinetics of flash-induced responses were abolished in the presence of dicyclohexylcarbodiimide, whereas the rate of potential decay in dark-adapted chloroplasts was not altered by dicyclohexylcarbodiimide. The results are consistent with the notion that dicyclohexylcarbodiimide diminishes H+ conductance of energized thylakoid membranes by interacting with the H+ channel of ATPase. The occurrence of a lag (approx. 300 ms) on the plot of potential undershoot (diffusion potential) versus illumination time might suggest the increase in H+ permeability coefficient of thylakoid membrane during illumination.  相似文献   

7.
Envelope- and stroma-free thylakoid membranes of Vicia faba chloroplasts were disintegrated and the electrophoretic behavior of the components studied with special regard to the pigment-protein complexes. The process of denaturation of the complexes was found to differ with respect to the other protein components. As the result of denaturation, the pigment-free protein moieties exhibit altered electrophoretic mobilities in relation to the “intact” complexes mainly conditioned by two processes contrary in their action, i.e. increase of charge and change of the hydrodynamic properties.Exhaustive extraction of the thylakoid membranes with 6 M guanidine · HCl removes the proteins mainly associated by polar and weak hydropobic interactions. The insoluble residue quantitatively exhibits the pigment-protein complexes including their denatured protein moieties, two extrinsic hydrophobic proteins as well as some protein traces. Electron-microscopic studies demonstrate the material still to have a high degree of order and preserved basic structure. After removing the lipids from the basic membrane, large amounts of the protein moiety of Complex II become soluble in guanidine · HCl. Since all other lamellar proteins are removable either by guanidine · HCl extraction or by trypsin digestion it is assumed the basic membrane of thylakoid to consist only of the pigment-protein complexes embedded into a lipid matrix.  相似文献   

8.
9.
10.
When 5-methylphenazinium methylsulfate and a reductant (ascorbate or NADH) are added together to a suspension of resealed chromaffin-vesicle membranes, the pH gradient (inside acidic) and the membrane potential (inside positive) established by the H(+)-translocating adenosine triphosphatase (ATPase) are rapidly dissipated. Dissipation of the pH gradient may be observed using either the optical probe acridine orange or the weak base methylamine. Dissipation of the membrane potential may be observed using the potential-dependent dye oxonol VI. A reductant and 5-methylphenazinium methylsulfate added in combination will also abolish a K+ diffusion potential across chromaffin-vesicle membranes but not across liposome membranes. 5-Methylphenazinium methylsulfate oxidizes cytochrome b561 in chromaffin-vesicle ghosts. Ascorbate readily reduces cytochrome b561, but reduction of cytochrome b561 by NADH is greatly enhanced in the presence of 5-methylphenazinium methylsulfate. These results are consistent with a mechanism in which proton gradient dissipation (a net efflux of H+) is caused by an influx of electrons through the membrane-protein cytochrome b561 coupled with an efflux of H carried by the reduced species 5-methyl-10-hydrophenazine. Although 5-methylphenazinium has been thought to accumulate within acidic vesicles as a weak base, this accounts for neither proton gradient dissipation nor for intravesicular accumulation of the compound.  相似文献   

11.
Previous studies characterizing an ATP-dependent proton pump in microsomal membrane vesicles of corn coleoptiles led to the conclusion that the proton pump was neither mitochondrial nor plasma membrane in origin (Mettler, Mandala, Taiz 1982 Plant Physiol 70: 1738-1742). To facilitate positive identification of the vesicles, corn coleoptile microsomal membranes were fractionated on linear sucrose and dextran gradients, with ATP-dependent [14C]methylamine uptake as a probe for proton pumping. On sucrose gradients, proton pumping activity exhibited a density of 1.11 grams/cubic centimeter and was coincident with the endoplasmic reticulum (ER). In the presence of high magnesium, the ER shifted to a heavier density, while proton pumping activity showed no density shift. On linear dextran gradients, proton pumping activity peaked at a lighter density than the ER. The proton pump appears to be electrogenic since both [14C]SCN uptake and 36Cl uptake activities coincided with [14C] methylamine uptake on dextran gradients. On the basis of density and transport properties, we conclude that the proton pumping vesicles are probably derived from the tonoplast. Nigericin-stimulated ATPase activity showed a broad distribution which did not coincide with any one membrane marker.  相似文献   

12.
Washed chloroplast membranes from romaine lettuce leaves were treated with the cross-linking reagent dimethyladipimidate (DMA) for various periods of time and subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparative examination of the electrophoretic profiles from control and treated membranes revealed that the light-harvesting chlorophyll-protein complex (LHCPC) was readily cross-linked to yield “dimers” and “oligomers” of higher molecular weight. Two polypeptides, of 25 and 23 kilodaltons, previously identified as two subunits of the LHCPC, were the major cross-linked species; other peptides were also cross-linked, but to a much lesser extent. These results suggest that cross-linking of chloroplast membranes with DMA, under our conditions, occurs primarily among the components of the LHCPC. We also measured the photosystem II activity in control and DMA-treated chloroplasts and found no impairment of this photochemical activity in the cross-linked chloroplasts as compared with controls.  相似文献   

13.
Robinson SP 《Plant physiology》1985,79(4):996-1002
Spinach leaf chloroplasts isolated in isotonic media (330 millimolar sorbitol, −1.0 megapascals osmotic potential) had optimum rates of photosynthesis when assayed at −1.0 megapascals. When chloroplasts were isolated in hypertonic media (720 millimolar sorbitol, −2.0 megapascals osmotic potential) the optimum osmotic potential for photosynthesis was shifted to −1.8 megapascals and the chloroplasts had higher rates of CO2-dependent O2 evolution than chloroplasts isolated in 330 millimolar sorbitol when both were assayed at high solute concentrations.

Transfer of chloroplasts isolated in 330 millimolar sorbitol to 720 millimolar sorbitol resulted in decreased chloroplast volume but this shrinkage was only transient and the chloroplasts subsequently swelled so that within 2 to 3 minutes at 20°C the chloroplast volume had returned to near the original value. Thus, actual steady state chloroplast volume was not decreased in hypertonic media. In isotonic media, there was a slow but significant uptake of sorbitol by chloroplasts (10 to 20 micromoles per milligram chlorophyll per hour at 20°C). Transfer of chloroplasts from 330 millimolar sorbitol to 720 millimolar sorbitol resulted in rapid uptake of sorbitol (up to 280 micromoles per milligram chlorophyll per hour at 20°C) and after 5 minutes the concentration of sorbitol inside the chloroplasts exceeded 500 millimolar. This uptake of sorbitol resulted in a significant underestimation of chloroplast volume unless [14C]sorbitol was added just prior to centrifuging the chloroplasts through silicone oil. Sudden exposure to osmotic stress apparently induced a transient change in the permeability of the chloroplast envelope since addition of [14C]sorbitol 3 minutes after transfer to hypertonic media (when chloroplast volume had returned to normal) did not result in rapid uptake of labeled sorbitol.

It is concluded that chloroplasts can osmotically adjust in vitro by uptake of solutes which do not normally penetrate the chloroplast envelope, resulting in a restoration of normal chloroplast volume and partially preventing the inhibition of photosynthesis by high solute concentrations. The results indicate the importance of matching the osmotic potential of isolation media to that of the tissue, particularly in studies of stress physiology.

  相似文献   

14.
The diffusional permeability of water across membranes from bovine and human erythrocyte ghosts was measured by a recently developed method which is based on the different indices of refraction of H2O and 2H2O. Resealed erythrocyte ghosts were prepared by a gel-filtration technique. Pd (2H2O/H2O) values of 1.2 X 10(-3) cm/s (human) and 1.7 X 10(-3) cm/s (bovine) were calculated at 20 degrees C. The activation energies of the water exchange were 23.5 kJ/mol (human) and 25.4 kJ/mol (bovine). Treatment of the ghosts with p-chloromercuribenzenesulfonic acid (PCMBS) led to a 60-70% inhibition of the diffusional water exchange. The pH equilibration across membranes of erythrocyte ghosts was measured by intracellular carboxyfluorescein. The rates of proton flux after pH-jumps (pH 7.3 to pH 6.1) were about 100-fold lower than those of the water exchange and dependent on the kind of anions present (Cl-, NO-3, SO2-4). The activation energies of proton flux were 60-70 kJ/mol. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) inhibited the exchange by 97-98% and lowered the activation energy. The inhibitor of water exchange, PCMBS, increased the proton-permeation rate by a factor of 4-5. It is assumed that the rate-limiting step for the proton permeation is determined by the anion exchange. Under this condition our results are not in accord with one channel as a common pathway for both the passive water and anion transport.  相似文献   

15.
Proteomics is a very powerful approach to link the information contained in sequenced genomes, like Arabidopsis, to the functional knowledge provided by studies of plant cell compartments, such as chloroplast envelope membranes. This review summarizes the present state of proteomic analyses of highly purified spinach and Arabidopsis envelope membranes. Methods targeted towards the hydrophobic core of the envelope allow identifying new proteins, and especially new transport systems. Common features were identified among the known and newly identified putative envelope inner membrane transporters and were used to mine the complete Arabidopsis genome to establish a virtual plastid envelope integral protein database. Arabidopsis envelope membrane proteins were extracted using different methods, that is, chloroform/methanol extraction, alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to the less hydrophobic ones. Mass spectrometry analyses lead to the identification of more than 100 proteins. More than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are (a) involved in ion and metabolite transport, (b) components of the protein import machinery and (c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism or in responses to oxidative stress, were associated with envelope membranes. Almost one third of the newly identified proteins have no known function. The present stage of the work demonstrates that a combination of different proteomics approaches together with bioinformatics and the use of different biological models indeed provide a better understanding of chloroplast envelope biochemical machinery at the molecular level.  相似文献   

16.
Mechanism of osmotic flow in porous membranes   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

17.
A defined ratio, gamma, of the total proton uptake to the concentration change of free internal H+ is observed for illuminated envelope-free chloroplasts (Haraux, F. and de Kouchkovsky, Y. (1979) Biochim. Biophys. Acta, 546, 455-471). Proton uptake is measured by the external pH shift, free internal H+ by 9-aminoacridine fluorescence quenching. Extension of this work leads to the following conclusions, which, in the case of 9-aminoacridine behaviour, should apply to any kind of diffusible protonizable delta pH probe: 1. The gamma constancy is preserved when the internal volume (Vi) is modulated by chlorophyll and osmolarity changes: thus, 9-aminoacridine behaves as expected from the delta pH distribution of an amine of high pK; previous doubts on this point are attributed to the lack of control of the external proton uptake. 2. With variable 9-aminoacridine concentration, however, some variation of gamma confirms the existence of slight light-induced probe-membrane interactions. 3. According to the diffuse layer theory, salts decrease the negative potential at the 'plane of closest approach' of the thylakoids, thereby releasing the excess 9-aminoacridine in this diffuse layer, which increases its fluorescence. Although of equal valency, NH4+ is more potent than K+, suggesting competition between amines for specific anionic binding sites. 4. Two categories of membrane modifications are induced by salts: in addition to the above-mentioned electrical effect, mono- and divalent cations at high concentration increase the chloroplast proton binding capacity. La3+ is only able to release the excess dye in the diffuse layer and leaves gamma unchanged. Therefore the probe-membrane interactions should have limited importance for steady-state delta pH measurement. 5. A Donnan-type dark pH difference, which could seriously bias these delta pH estimates, is found experimentally to be less than 2 (no significant gamma change when Vi varies) and even theoretically less than 1 (on the basis of the concentration of the non-diffusible internal protonizable groups). Similarly, the predictable errors of Vi and its possible light-induced variations must have a small effect on delta pH under present experimental conditions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号