首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of polyamines in gastroprotection induced by epidermal growth factor.   总被引:1,自引:0,他引:1  
Polyamines have been shown to stimulate cellular growth and differentiation, though their role in the prevention of acute gastric lesion induced by various noxious agents has been little studied. Epidermal growth factor (EGF) exhibits gastroprotective and ulcer healing properties due to its potent mitogenic and growth promoting action. This study was designed to compare the gastroprotective effects of spermine and EGF against gastric damage induced by absolute ethanol, acidified aspirin and stress and to determine the role of endogenous polyamines in EGF-induced gastroprotection. Spermine and EGF significantly reduced the lesions induced by all three ulcerogens. Oral administration of spermine or subcutaneous infusion of EGF in 24 h fasted rats with chronic gastric fistula resulted in similar inhibition of gastric acid and pepsin secretion. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, did not affect ethanol lesions, but reversed the protective effect EGF but not spermine against ethanol. This finding indicates that polyamines mediate, at least in part, EGF-induced gastroprotection. In tests with oral administration of aminoguanidine that is known to suppress the activity of diamino-oxidase (DAO) and to inhibit the degradation of polyamines, EGF showed a markedly enhanced gastroprotective activity against ethanol damage. Since indomethacin failed to affect the gastroprotective effects of spermine and EGF and neither of these agents influenced the mucosal generation of PGE2 in intact or injured gastric mucosa, we conclude that prostaglandins are not the major factors in spermine- and EGF-induced gastroprotection. This study demonstrates that polyamines are highly effective against gastric lesions induced by various ulcerogens and that they act as primary mediators of EGF-induced gastroprotection.  相似文献   

2.
In humans eicosapentaenoic acid can be converted to 3-series prostaglandins (PGF3 alpha, PGI3, and PGE3). Whether 3-series prostaglandins can protect the gastric mucosa from injury as effectively as their 2-series analogs is unknown. Therefore, we compared the protective effects of PGF3 alpha and PGF2 alpha against gross and microscopic gastric mucosal injury in rats. Animals received a subcutaneous injection of either PGF3 alpha or PGF2 alpha in doses ranging from 0 (vehicle) to 16.8 mumol/kg and 30 min later they received intragastric administration of 1 ml of absolute ethanol. Whether mucosal injury was assessed 60 min or 5 min after ethanol, PGF3 alpha was significantly less protective against ethanol-induced damage than PGF2 alpha. These findings indicate that the presence of a third double bond in the prostaglandin F molecule between carbons 17 and 18 markedly reduces the protective effects of this prostaglandin on the gastric mucosa.  相似文献   

3.
This study was designed to demonstrate the cytoprotective effect of an antacid containing aluminium phosphate (Phosphalugel) against ethanol-induced gastric injury in the rat and to determine whether this cytoprotective effect is mediated by endogenous prostaglandins and sulfhydryls. We have quantitatively evaluated gastric mucosal lesions using macroscopic and histological techniques one hour after ethanol administration. Two ml of aluminium phosphate given orally one hour before administration of 2 ml of 100% ethanol significantly (p less than 0.01) reduced the area of macroscopic lesions induced by ethanol (3.3 +/- 0.9%) when compared to distilled water (20 +/- 4.8%). The histological study showed that aluminium phosphate prevented deep tissue necrosis. However, it did not protect surface epithelial cells against ethanol injury. Pretreatment with indomethacin, 5 mg/kg sc one hour before aluminium phosphate, slightly but significantly (p less than 0.05) reduced the cytoprotective effect of aluminium phosphate. Macroscopic lesions occupied 4.3 +/- 0.94% and 1.88 +/- 0.41% of total mucosal area in indomethacin group and in vehicle group, respectively. On the other hand, the sulfhydryl blocker, N-ethyl-maleimide, 10 mg/kg sc, given one hour before aluminium phosphate, completely abolished the cytoprotective effect of aluminium phosphate (32.92 +/- 4.85% in N-ethyl-maleimide group versus 3.78 +/- 1.41% in vehicle group; p less than 0.01). These results show that aluminium phosphate has a cytoprotective effect against ethanol injury in the rat. This property appears to be mediated by both endogenous prostaglandins and sulfhydryls.  相似文献   

4.
5.
This study investigated the action of enprostil, a synthetic analog of PGE2, on gastric HCO3- secretion in humans and on duodenal HCO3- secretion in the anesthetized rat. A previously validated 2-component model was used to calculate gastric HCO3- and H+ secretion in 10 human subjects. Compared to placebo, a single 70 micrograms oral dose of enprostil increased basal gastric HCO3- secretion from 1810 +/- 340 to 3190 +/- 890 mumol/hr (P less than 0.05). In addition, enprostil reduced basal gastric H+ secretion from 5240 +/- 1140 to 1680 +/- 530 mumol/hr (P less than 0.02). Enprostil also increased HCO3- secretion and reduced H+ secretion during intravenous pentagastrin infusion. In the rat, duodenal HCO3- secretion was measured by direct titration in situ using perfused segments of duodenum just distal to the Brunner gland area and devoid of pancreatic and biliary secretions. Addition of enprostil (10 micrograms/ml) to the duodenal bathing solution increased duodenal HCO3- secretion from 6.3 +/- 1.3 to 15.1 +/- 2.0 mumol/cm X hr (P less than 0.01, n = 6). The stimulatory action of enprostil on duodenal HCO3- secretion at 10 micrograms/ml was comparable in magnitude and duration to that of 10 micrograms/ml natural PGE2. In summary, the PGE2 analog enprostil stimulated gastroduodenal HCO3- secretion, effects which may be beneficial in protection of the gastroduodenal mucosa against luminal acid.  相似文献   

6.
Epidermal growth factor (EGF) has been shown to exert gastric hyperemic and gastroprotective effects via capsaicin-sensitive afferent neurons, including the release of calcitonin gene-related peptide (CGRP). We examined the protective and vasodilatory effects of EGF on the gastric mucosa and its interaction with sensory nerves, CGRP, and nitric oxide (NO) in anesthetized rats. Intragastric EGF (10 or 30 microg) significantly reduced gastric mucosal lesions induced by intragastric 60% ethanol (50.6% by 10 microg EGF and 70.0% by 30 microg EGF). The protective effect of EGF was significantly inhibited by pretreatment with capsaicin desensitization, human CGRP1 antagonist hCGRP-(8-37), or N(omega)-nitro-L-arginine methyl ester (L-NAME). Intravital microscopy showed that topically applied EGF (10-1,000 microg/ml) dilated the gastric mucosal arterioles dose dependently and that this vasodilatory effect was significantly inhibited by equivalent pretreatments. These findings suggest that EGF plays a protective role against ethanol-induced gastric mucosal injury, possibly by dilating the gastric mucosal arterioles via capsaicin-sensitive afferent neurons involving CGRP and NO mechanisms.  相似文献   

7.
Solcoseryl, a deproteinized extract of calf blood, protects the gastric mucosa against various topical irritants and enhances the healing of chronic gastric ulcerations but the mechanisms of these effects have been little studied. This study was designed to elucidate the active principle in Solcoseryl and to determine the role of prostaglandins (PG) and polyamines in the antiulcer properties of this agent. Using both, the radioimmunoassay and radioreceptor assay, EGF-like material was detected in Solcoseryl preparation. Solcoseryl given s.c. prevented the formation of stress-induced gastric lesions and this was accompanied by an increase in the generation of PGE2 in the gastric mucosa. Similar effects were obtained with EGF. Pretreatment with indomethacin, to suppress mucosal generation of prostaglandins (PG), greatly augmented stress-induced gastric ulcerations and antagonized the protection exerted by both Solcoseryl and EGF. Solcoseryl, like EGF, enhanced the healing of chronic gastro-duodenal ulcerations. This effect was abolished by the pretreatment with difluoromethylornithine, an inhibitor of ornithine decarboxylase, the key enzyme in the biosynthesis of polyamines. The healing effects of Solcoseryl and EGF was also reduced by prednisolone which decreased the angiogenesis in the granulation tissue in the ulcer area. These results indicate that Solcoseryl 1. contains EGF-like material, 2. displays the protective and ulcer healing effects similar to those of EGF and involving both PG and polyamines and 3. acts via similar mechanism as does EGF.  相似文献   

8.
The mechanism of the protection by human epidermal growth factor (hEGF) against the gastric mucosal lesions induced by acidified ethanol was studied in rats. At different times following the subcutaneous administration of hEGF (30 micrograms/kg), intragastric acidified ethanol (EtOH: 0.125 M HC1 = 50:50 v/v%) was administered to induce an experimental gastric mucosal lesion. Mean length of the lesion in the gastric mucosa was used as a lesion index. Extravasation of intravenously injected Evans blue into the gastric wall and gastric contents was used as an indicator of vascular permeability. Pretreatment with hEGF decreased both the gastric mucosal lesions and the increase of vascular permeability caused by acidified ethanol with similar time profiles relative to pretreatment with hEGF. Maximal protective actions of hEGF occurred about 10 to 30 min after the observed peak plasma concentration of hEGF. Indomethacin and N-ethylmaleimide, but not iodoacetamide, blocked the protective action of hEGF, indicating that endogenous prostaglandins and/or sulfhydryls may participate in the protective action of hEGF. The content of endogenous nonprotein sulfhydryls in the gastric mucosa decreased markedly after acidified ethanol. However, pretreated hEGF did not restore the sulfhydryl contents. Thus, it seemed that endogenous prostaglandins, but not sulfhydryls, are the probable mediators for protection against gastric mucosal injury caused by acidified ethanol.  相似文献   

9.
The role that nitric oxide, an endothelium-derived relaxing factor, may play in the regulation of gastric mucosal defence was investigated by assessing the potential protective actions of this factor against the damage caused by ethanol in an ex vivo chamber preparation of the rat stomach. Topical application of glyceryl trinitrate and sodium nitroprusside, which have been shown to release nitric oxide, markedly reduced the area of 70% ethanol-induced hemorrhagic damage. Topical application of a 0.01% solution of authentic nitric oxide also significantly reduced the severity of mucosal damage. Pretreatment with indomethacin precluded the involvement of endogenous prostaglandins in the protective effects of these agents. The protective effects of NO were transient, since a delay of 5 minutes between NO administration and ethanol administration resulted in a complete loss of the protective activity. The protection against ethanol afforded by 10 micrograms/ml nitroprusside could be completely reversed by intravenous infusion of either 1% methylene blue or 1 mM hemoglobin, both of which inhibit vasodilation induced by nitric oxide. Intravenous infusion of 1% methylene blue significantly increased the susceptibility of the mucosa to damage induced by topical 20% ethanol. These results indicate that ethanol-induced gastric damage can be significantly reduced by nitric oxide. The mechanisms underlying the protective actions of nitric oxide are unclear, but may be related to its vasodilator or anti-aggregatory properties.  相似文献   

10.
The role of increased prostaglandin production and the effects of exogenous prostaglandins on inflammation of colitis are not established. We administered intramuscular 16,16-dimethyl prostaglandin E2 (DiM-PGE2) and indomethacin to rabbits with formalin immune-complex colitis and measured leukotriene B4 (LTB4), prostaglandin E2 (PGE2) and severity of inflammation. DiM-PGE2 (100 micrograms/kg/BID) reduced LTB4 production (from 401 +/- 108 to 216 +/- 58 pg/ml) and infiltration of neutrophils, mucosal necrosis, inflammatory exudate and edema (all P less than 0.05). Other studies determined that parenteral DiM-PGE2 did not reduce the initial chemical damage induced by formalin, suggesting that cytoprotection of chemical insult was not the mechanism of suppressed inflammation in the immune colitis model. Indomethacin (10 mg/kg/d) reduced endogenous PGE2 by 80%, but did not reduce leukotriene production or inflammation. Exogenous prostaglandins cause a dose-dependent suppression of inflammation in experimental colitis, by a mechanism other than cytoprotection of chemical-induced mucosal injury.  相似文献   

11.
Prostaglandin (PG)E derivatives are widely used for treating gastric mucosal injury. PGE receptors are classified into four subtypes, EP(1), EP(2), EP(3), and EP(4). We have tested which EP receptor subtypes participate in gastric mucosal protection against ethanol-induced gastric mucosal injury and clarified the mechanisms of such protection. The gastric mucosa of anesthetized rats was perfused at 2 ml/min with physiological saline, agonists for EP(1), EP(2), EP(3), and EP(4), or 50% ethanol, using a constant-rate pump connected to a cannula placed in the esophagus. The gastric microcirculation of the mucosal base of anesthetized rats was observed by transillumination through a window made by removal of the adventitia and muscularis externa. PGE(2) and subtype-specific EP agonists were applied to the muscularis mucosae at the window. Application of 50% ethanol dilated the mucosal arterioles and constricted the collecting venules. Collecting venule constriction by ethanol was completely inhibited by PGE(2) and by EP(2) and EP(4) agonists (100 nM) but not by an EP(1) or an EP(3) agonist. Ethanol-induced mucosal injury was also inhibited by EP(2) and EP(4) agonists. When leukotriene (LT)C(4) levels in the perfusate of the gastric mucosa were determined by ELISA, intragastric ethanol administration elevated the LTC(4) levels sixfold from the basal levels. These elevated levels were significantly (60%) reduced by both EP(2) and EP(4) agonists but not by other EP agonists. Since LTC(4) application at the window constricted collecting venules strongly, and an LTC antagonist reduced ethanol-induced mucosal injury, reductions in LTC(4) generation in response to EP(2) and EP(4) receptor signaling may be relevant to the protective action of PGE(2). The present results indicate that EP(2) and EP(4) receptor signaling inhibits ethanol-induced gastric mucosal injury through cancellation of collecting venule constriction by reducing LTC(4) production.  相似文献   

12.
The action of prostaglandins and indomethacin on gastric mucosal cyclic nucleotide concentrations was evaluated in 18 anesthetized mongrel dogs. Prostaglandins E1 (PGE1) and E2 (PGE2) (25 microgram/kg bolus, then 2 micrograms/kg/min) were administered both intravenously (4 experiments; femoral vein) and directly into the gastric mucosal circulation (10 experiments; superior mesenteric artery). The possible synergistic effect of pre-treatment and continuous arterial infusion of indomethacin (5 mg/kg bolus for 5 min, then 5 mg/min), a prostaglandin synthetase inhibitor, with PGE2 was studied in 4 experiments. Antral and fundic mucosa were biopsied and measured by radioimmunoassay for cyclic nucleotides. Doses of PGE1 and PGE2 which inhibited histamine-stimulated canine gastric acid secretion did not significantly alter antral or fundic mucosal cyclic nucleotide concentrations. Concomitant infusion of PGE2 with indomethacin did not potentiate the mucosal nucleotide response compared to PGE2 alone. These studies fail to implicate cyclic nucleotides as mediators of the inhibitory acid response response induced by PGE1 or PGE2 in intact dog stomach.  相似文献   

13.
According earlier, investigations nitrogen bridgehead compounds make a representative group of non-prostaglandin type gastroprotective agents. One member of this group is CHINOIN-127 (1,6-dimethyl-4-oxo-1, 6, 7, 8, 9, 9a-hexahydro-4H-pyrido-(1, 2a)-pyrimidine-3-carbox-amide). CHINOIN-127 is a potent non-narcotic analgesic and antiinflammatory agent and has a remarkable protective effect on indomethacin induced ulcer (ED50 = 25 mg/kg p.o.) and on acidified ethanol induced ulcer (ED50 = 26 mg/kg p.o.). In this study we examined the mechanism of action of cytoprotective effect of this drug and we made a comparison between the cytoprotective effect of 20% ethanol and 25 mg/kg CHINOIN-127. In the gastric mucosa of control rats we observed a balance between TxA2 and PGI2 (PGI2/TxA2 = 3.8) and between the cytoprotective prostaglandins (PGI2 and PGE2) and ulcerogen eicosanoids (TxA2 and leukotrienes) (PGI2 + PGE2/TxA2 + LTs = 3.9). 100% ethanol treatment causes disintegration of this balance, shifting the synthesis towards the ulcerogen eicosanoids production. CHINOIN-127 and 20% ethanol pretreatment improves the deranged balance between cytoprotective prostaglandins and ulcerogen eicosanoids. Our results demonstrate that CHINOIN-127 and 20% ethanol have a similar mechanism of cytoprotective action on ethanol induced ulcer in rats.  相似文献   

14.
Lam EK  Tai EK  Koo MW  Wong HP  Wu WK  Yu L  So WH  Woo PC  Cho CH 《Life sciences》2007,80(23):2128-2136
The gastric mucosa is frequently exposed to different exogenous and endogenous ulcerative agents. Alcoholism is one of the risk factors for the development of mucosal damage in the stomach. This study aimed to assess if a probiotic strain Lactobacillus rhamnosus GG (LGG) is capable of protecting the gastric mucosa from acute damage induced by intragastric administration of ethanol. Pre-treatment of rats with LGG at 10(9) cfu/ml twice daily for three consecutive days markedly reduced ethanol-induced mucosal lesion area by 45%. LGG pre-treatment also significantly increased the basal mucosal prostaglandin E(2) (PGE(2)) level. In addition, LGG attenuated the suppressive actions of ethanol on mucus-secreting layer and transmucosal resistance and reduced cellular apoptosis in the gastric mucosa. It is suggested that the protective action of LGG on ethanol-induced gastric mucosal lesions is likely attributed to the up-regulation of PGE(2), which could stimulate the mucus secretion and increase the transmucosal resistance in the gastric mucosa. All these would protect mucosal cells from apoptosis in the stomach.  相似文献   

15.
PGE1 and PGE2 have been reported to enhance natural expulsion of Nippostrongylus brasiliensis, a nematode parasite, from the intestine of the rat. Mucus production may also be a key element of worm rejection. Our study attempts to determine if 1) PGE1 or PGE2 alter the normal course of infection with N. brasiliensis in rats, 2) a known mucous enhancing drug, acetazolamide, can augment the rate of worm expulsion, and 3) combinations of prostaglandins and acetazolamide affect N. brasiliensis in the rat. Rats were inoculated with approximately 1,000 infective larvae of N. brasiliensis. Animals were administered, intraduodenally, one of the following: 0.2 ml 0.9% NaCl; 0.2 ml 100% ethanol; 250 micrograms PGE1/0.2 ml 100% ethanol; 250 micrograms PGE2/0.2 ml 100% ethanol; 250 micrograms acetazolamide/0.2 ml 100% ethanol; 250 micrograms PGE1 or PGE2 + 250 micrograms acetazolamide/0.2 ml 100% ethanol. These solutions were given in a single bolus on day 6 postinoculation (PI) or twice daily on days 6-9 PI. Following these treatments the number of parasite ova per gram feces per day for days 6-10 PI and numbers of worms present at necropsy on day 10 PI were determined. Treatment with prostaglandins or acetazolamide or both failed to adversely affect egg deposition by adult female worms or the number of worms in the small intestine. These results do not support the involvement of prostaglandins in the expulsion of N. brasiliensis from the host intestine.  相似文献   

16.
The effects of PGE2 and its stable analogue, 16,16 dimethyl PGE2 (dmPGE2) were investigated on ethanol-induced gastric mucosal haemorrhagic lesions and leukotriene formation in the rat. Exposure of the rat gastric mucosa to ethanol in-vivo, produced a concentration-related increase in the mucosal formation of leukotriene B4 (LTB4) which was correlated with macroscopically-apparent haemorrhagic damage to the mucosa. Challenge with absolute ethanol likewise enhanced the mucosal formation of LTC4 whereas the mucosal formation of 6-keto-PGF1 alpha was unaffected. Challenge of the rat gastric mucosa in vitro with ethanol induced a concentration-dependent increase in the formation of LTB4 and LTC4, but not 6-keto PGF1 alpha. Pretreatment with PGE2 (200-500 micrograms/kg p.o.) prevented the haemorrhagic mucosal damage induced by oral administration of absolute ethanol but not the increased formation of leukotrienes by the mucosa. In contrast, pretreatment with a high dose of dmPGE2 (20 micrograms/kg p.o.) prevented both the gastric mucosal lesions and the increase mucosal leukotriene formation. The differences in the effects of these prostaglandins may be related to the nature or degree of protection of the gastric mucosa. Thus, high doses of dmPGE2 but not PGE2 may protect the cells close to the luminal surface of the mucosa and hence reduce the stimulation of leukotriene synthesis by these cells.  相似文献   

17.
This study evaluated the effects of 25% ethanol, a mild irritant, on endogenous prostanoid synthesis in the rat stomach before and after exposure to oral 100% ethanol. Rats received water or 25% ethanol orally. After 15 min, a portion of each group was sacrificed and the remaining animals treated with 100% ethanol prior to sacrifice one minute later. Microsomal membrane fractions were prepared from the glandular gastric mucosa in all groups and incubated with 14C arachidonic acid in the presence of cofactors. Endogenous mucosal prostanoid synthesis was analyzed by radiochromatography and results correlated with the presence or absence of gastric injury macroscopically. Prostanoids measured included PGI2, PGF2 alpha, PGE2, PGD2, PGA2, and thromboxane A2. Additional experiments were performed in like manner to those just described with the exception that indomethacin (5 mg/kg intraperitoneally) pretreatment was rendered. Stomachs exposed to water or 25% ethanol alone demonstrated a modest and equivalent level of synthesis of all prostanoids measured. Exposure to 100% ethanol (with and without mild irritant pretreatment) significantly increased prostanoid synthesis (especially PGI2, PGF2 alpha, and PGE2) compared with stomachs exposed to water or 25% ethanol alone; only mild irritant treated mucosa was protected from injury by 100% ethanol. Indomethacin pretreatment reversed the increased prostanoid synthesis in mucosa exposed to 100% ethanol, with or without mild irritant pretreatment, and partially reversed the protective effect of 25% ethanol. Other experiments using tissue slices in which perturbations in mucosal levels of prostanoids were measured by radioimmunoassay under identical experimental conditions exhibited similar results. These data dispute the notion that adaptive cytoprotection is mediated by increased endogenous prostanoid synthesis. The partial reversal of this process by indomethacin was most likely secondary to some other action of this agent, such as a reduction in gastric blood flow, rather than direct effects on prostanoid synthesis.  相似文献   

18.
The protective effect of human epidermal growth factor (hEGF) on the gastric mucosal lesions in rats was examined in relation to the immunoreactive concentration of plasma. Human EGF (30 micrograms/kg) was administered intravenously, intraperitoneally or subcutaneously. At different times following the administration of hEGF, rats received acidified ethanol solution to induce an experimental gastric mucosal lesion. Sum of lesion length in the gastric mucosa was used as a lesion index. Human EGF administered parenterally markedly decreased the gastric mucosal lesions in 10 min after administration of necrotizing solution, and 10 to 30 min delay was observed in the development of maximal protective action. Profiles of protective potency against the hEGF dose administered intraperitoneally or subcutaneously 30 min before administration of necrotizing solution revealed that the effective dose of hEGF (ED50) was about 5.2 and 2.6 micrograms/kg, for intraperitoneal and subcutaneous administrations, respectively.  相似文献   

19.
1. The mechanism of gastroprotective action of an antiulcer drug, sucralfate, was investigated. Studies in vivo were conducted with groups of rats with and without indomethacin pretreatment, and the animals received sucralfate followed by ethanol. In the in vitro system, gastric mucosa was cultured in the presence of sucralfate with and without indomethacin. 2. The in vivo experiments revealed that ethanol caused extensive gastric lesions which were significantly reduced following sucralfate pretreatment. Furthermore, sucralfate was also capable of preventing the detrimental effect of indomethacin on gastric mucus gel dimension and its mucin content. 3. The data with gastric mucosal culture showed that the sucralfate elicited increase in mucin was accompanied by the enhanced turnover of mucosal phosphoinositides. 4. Regardless of the inclusion of indomethacin, sucralfate evoked 23% reduction in phosphatidylinositol, 24% increase in inositol-1-phosphate and 3.4-fold increase in inositol-1,4,5-trisphosphate, thus indicating the activation of phosphoinositide-specific phospholipase C. 5. The results demonstrate that the gastric mucosal protective action of sucralfate is not mediated by endogenous prostaglandins, but appears to involve the metabolism of phosphoinositide-derived messenger molecules.  相似文献   

20.
A study was performed to examine the role of prostaglandins (PGs) in the mechanism of the ethanol-induced suppression of FBM, in which the objective was to test the hypothesis that fetal administration of PGE2 can suppress the incidence of FBM following reversal of ethanol-induced suppression of FBM by indomethacin, a fatty acid cyclooxygenase inhibitor. Instrumented near-term pregnant ewes received 1-h maternal infusion of ethanol (1 g/kg maternal body weight) followed 0.5 h later by a 3-h fetal infusion of indomethacin (1 mg/kg fetal body weight/h), and then a 2-h fetal infusion of PGE2 (400 ng/kg fetal body weight/min). Prior to drug administration, FBM occurred approximately 36.1 +/- 2.6% of the time. FBM were suppressed during the period of ethanol infusion (9.6 +/- 1.7%); the ethanol-induced suppression of FBM was reversed by fetal indomethacin treatment (77.5 +/- 14.1%); shortly after the onset of fetal PGE2 infusion, the incidence of FBM decreased to a 2-h mean incidence of 14.1 +/- 4.2%, which was similar in magnitude to that observed after maternal ethanol infusion. After the completion of PGE2 infusion, the incidence of FBM rapidly increased to a peak incidence of 83.4 +/- 19.2%, which was indicative of a prolonged effect of indomethacin on FBM. The data indicate that PGs mediate the ethanol-induced suppression of ovine FBM and that the action of indomethacin to antagonize ethanol-induced suppression of FBM is primarily due to its inhibition of PG synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号