首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flavoenzyme thioredoxin reductase from Escherichia coli contains an oxidation-reduction active disulfide made up of Cys135 and Cys138. Mutations changing each Cys residue to a Ser residue have been effected (Prongay, A. J., engelke, D. R., and Williams, C. H., Jr. (1989) J. Biol. Chem. 264, 2656-2664). The FAD prosthetic group of each altered thioredoxin reductase has been replaced with 1-deaza-FAD (a flavin analog with carbon substituted for nitrogen at position 1), 4-thio-FAD (a flavin analog with sulfur substituted for oxygen at position 4), and 6-thiocyanato-FAD. 1-Deaza-FAD-TRR(Cys135,Ser138) has absorbance and fluorescence spectral properties similar to the oxidized form of wild type apothioredoxin reductase reconstituted with 1-deaza-FAD. The absorbance spectrum of 1-deaza-FAD-TRR(Ser135,Cys138) is similar to the spectrum of the two-electron reduced form of wild type apothioredoxin reductase reconstituted with 1-deaza-FAD, indicating that it is a mixture of two species (O'Donnell, M. E., and Williams, C. H., Jr. (1984) J. Biol. Chem. 259, 2243-2251). The spectrum of one of these species of 1-deaza-FAD-TRR(Ser135,Cys138) resembles the spectrum of oxidized 1-deaza-FAD bound to wild type apothioredoxin reductase. The other species has an absorbance spectrum with a single peak at 400 nm (epsilon 400 = 11,100 M-1 cm-1) and resembles the spectrum of a thiolate adduct at the C4a position of the 1-deaza-FAD. The equilibrium between these species is pH-dependent, with a maximum of 50% C4a-adduct formation at low pH, and is linked to pK alpha values at 8.2 and 9.3. The absorbance spectrum of 4-thio-FAD-TRR(Cys135,Ser138) resembles the spectrum of the unbound 4-thio-FAD, whereas 4-thio-FAD-TRR(Ser135,Cys138) has a spectrum indicative of a mixture of 4-thio-FAD and FAD, suggesting a reaction between the 4-position of the flavin and Cys138. The binding of 6-thiocyanato-FAD to the apoprotein of the mutated enzymes showed no evidence for a reaction between the thiols and the group at the 6-position of the flavin.  相似文献   

2.
Mutation of one of the cysteine residues in the redox active disulfide of thioredoxin reductase from Escherichia coli results in C135S with Cys138 remaining or C138S with Cys135 remaining. The expression system for the genes encoding thioredoxin reductase, wild-type enzyme, C135S, and C138S has been re-engineered to allow for greater yields of protein. Wild-type enzyme and C135S were found to be as previously reported, whereas discrepancies were detected in the characteristics of C138S. It was shown that the original C138S was a heterogeneous mixture containing C138S and wild-type enzyme and that enzyme obtained from the new expression system is the correct species. C138S obtained from the new expression system having 0.1% activity and 7% flavin fluorescence of wild-type enzyme was used in this study. Reductive titrations show that, as expected, only 1 mol of sodium dithionite/mol of FAD is required to reduce C138S. The remaining thiol in C135S and C138S has been reacted with 5,5'-dithiobis-(2-nitrobenzoic acid) to form mixed disulfides. The half time of the reaction was <5 s for Cys138 in C135S and approximately 300 s for Cys135 in C138S showing that Cys138 is much more reactive. The resulting mixed disulfides have been reacted with Cys32 in C35S mutant thioredoxin to form stable, covalent adducts C138S-C35S and C135S-C35S. The half times show that Cys138 is approximately fourfold more susceptible to attack by the nucleophile. These results suggest that Cys138 may be the thiol initiating dithiol-disulfide interchange between thioredoxin reductase and thioredoxin.  相似文献   

3.
Site-directed mutagenesis has been employed to study the mechanism of hydride transfer from NADPH to NADPH-cytochrome P450 oxidoreductase. Specifically, Ser457, Asp675, and Cys630 have been selected because of their proximity to the isoalloxazine ring of FAD. Substitution of Asp675 with asparagine or valine decreased cytochrome c reductase activities 17- and 677-fold, respectively, while the C630A substitution decreased enzymatic activity 49-fold. Earlier studies had shown that the S457A mutation decreased cytochrome c reductase activity 90-fold and also lowered the redox potential of the FAD semiquinone (Shen, A., and Kasper, C. B. (1996) Biochemistry 35, 9451-9459). The S457A/D675N and S457A/D675N/C630A mutants produced roughly multiplicative decreases in cytochrome c reductase activity (774- and 22000-fold, respectively) with corresponding decreases in the rates of flavin reduction. For each mutation, increases were observed in the magnitudes of the primary deuterium isotope effects with NADPD, consistent with decreased rates of hydride transfer from NADPH to FAD and an increase in the relative rate limitation of hydride transfer. Asp675 substitutions lowered the redox potential of the FAD semiquinone. In addition, the C630A substitution shifted the pKa of an ionizable group previously identified as necessary for catalysis (Sem, D. S., and Kasper, C. B. (1993) Biochemistry 32, 11539-11547) from 6.9 to 7.8. These results are consistent with a model in which Ser457, Asp675, and Cys630 stabilize the transition state for hydride transfer. Ser457 and Asp675 interact to stabilize both the transition state and the FAD semiquinone, while Cys630 interacts with the nicotinamide ring and the fully reduced FAD, functioning as a proton donor/acceptor to FAD.  相似文献   

4.
Flavocytochrome P450 BM3 is a member of the diflavin reductase enzyme family. Members include cytochrome P450 reductase, nitric-oxide synthase, methionine synthase reductase, and novel oxidoreductase 1. These enzymes show a strong preference for NADPH over NADH as reducing coenzyme. An aromatic residue stacks over the FAD isoalloxazine ring in each enzyme, and in some cases it is important in controlling coenzyme specificity. In P450 BM3, the aromatic residue inferred from sequence alignments to stack over the FAD is Trp-1046. Mutation to Ala-1046 and His-1046 effected a remarkable coenzyme specificity switch. P450 BM3 W1046A/W106H FAD and reductase domains are efficient NADH-dependent ferricyanide reductases with selectivity coefficients (k(cat)/K(m)(NADPH)/k(cat)/K(m)(NADH)) of 1.5, 67, and 8571 for the W1046A, W1046H, and wild-type reductase domains, respectively. Stopped-flow photodiode array absorption studies indicated a charge-transfer intermediate accumulated in the W1046A FAD domain (and to a lesser extent in the W1046H FAD domain) and was attributed to formation of a reduced FADH(2)-NAD(P)(+) charge-transfer species, suggesting a relatively slow rate of release of NAD(P)(+) from reduced enzymes. Unlike wild-type enzymes, there was no formation of the blue semiquinone species observed during reductive titration of the W0146A/W146H FAD and reductase domains with dithionite or NAD(P)H. This was a consequence of elevation of the semiquinone/hydroquinone couple of the FAD with respect to the oxidized/semiquinone couple, and a concomitant approximately 100-mV elevation in the 2-electron redox couple for the enzyme-bound FAD (-320, -220, and -224 mV in the wild-type, W1046A, and W1046H FAD domains, respectively).  相似文献   

5.
The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase catalyzes reversibly the 2-electron reduction of APS to sulfite and AMP, a key step in the biological sulfur cycle. APS reductase from one archaea and three different bacteria has been purified, and the molecular and catalytic properties have been characterized. The EPR parameters and redox potentials (-60 and -520 mV versus NHE) have been assigned to the two [4Fe-4S] clusters I and II observed in the three-dimensional structure of the enzyme from Archaeoglobus fulgidus (Fritz, G., Roth, A., Schiffer, A., Büchert, T., Bourenkov, G., Bartunik, H. D., Huber, H., Stetter, K. O., Kroneck, P. M. H., and Ermler, U. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 1836-1841). Sulfite binds to FAD to form a covalent FAD N(5)-sulfite adduct with characteristic UV/visible spectra, in accordance with the three-dimensional structure of crystalline enzyme soaked with APS. UV/visible monitored titrations reveal that the substrates AMP and APS dock closely to the FAD cofactor. These results clearly document that FAD is the site of the 2-electron reduction of APS to sulfite and AMP. Reaction of APS reductase enzyme with sulfite and AMP leads to partial reduction of the [4Fe-4S] centers and formation of the anionic FAD semiquinone. Thus, both [4Fe-4S] clusters function in electron transfer and guide two single electrons from the protein surface to the FAD catalytic site.  相似文献   

6.
Human methionine synthase reductase (MSR) catalyzes the NADPH-dependent reductive methylation of methionine synthase. MSR is 78 kDa flavoprotein belonging to a family of diflavin reductases, with cytochrome P450 reductase (CPR) as the prototype. MSR and its individual flavin-binding domains were cloned as GST-tagged fusion proteins for expression and purification from Escherichia coli. The isolated flavin domains of MSR retain UV-visible and secondary structural properties indicative of correctly folded flavoproteins. Anaerobic redox titrations on the individual domains assisted in assignment of the midpoint potentials for the high- and low-potential flavin. For the isolated FMN domain, the midpoint potentials for the oxidized/semiquinone (ox/sq) couple and semiquinone/hydroquinone (sq/hq) couple are -112 and -221 mV, respectively, at pH 7.0 and 25 degrees C. The corresponding couples in the isolated FAD domain are -222 mV (ox/sq) and -288 mV (sq/hq). Both flavins form blue neutral semiquinone species characterized by broad absorption peaks in the long-wavelength region during anaerobic titration with sodium dithionite. In full-length MSR, the values of the FMN couples are -109 mV (ox/sq) and -227 mV (sq/hq), and the corresponding couple values for FAD are -254 mV (ox/sq) and -291 mV (sq/hq). Separation of the MSR flavins does not perturb their thermodynamic properties, as midpoint potentials for all four couples are similar in isolated domains and in full-length MSR. The redox properties of MSR are discussed in relation to other members of the diflavin oxidoreductase family and the mechanism of electron transfer.  相似文献   

7.
The xylene monooxygenase system encoded by the TOL plasmid pWW0 of Pseudomonas putida catalyses the hydroxylation of a methyl side-chain of toluene and xylenes. Genetic studies have suggested that this monooxygenase consists of two different proteins, products of the xylA and xylM genes, which function as an electron-transfer protein and a terminal hydroxylase, respectively. In this study, the electron-transfer component of xylene monooxygenase, the product of xylA, was purified to homogeneity. Fractions containing the xylA gene product were identified by its NADH:cytochrome c reductase activity. The molecular mass of the enzyme was determined to be 40 kDa by SDS/PAGE, and 42 kDa by gel filtration. The enzyme was found to contain 1 mol/mol of tightly but not covalently bound FAD, as well as 2 mol/mol of non-haem iron and 2 mol/mol of acid-labile sulfide, suggesting the presence of two redox centers, one FAD and one [2Fe-2S] cluster/protein molecule. The oxidised form of the protein had absorbance maxima at 457 nm and 390 nm, with shoulders at 350 nm and 550 nm. These absorbance maxima disappeared upon reduction of the protein by NADH or dithionite. The NADH:acceptor reductase was capable of reducing either one- or two-electron acceptors, such as horse heart cytochrome c or 2,6-dichloroindophenol, at an optimal pH of 8.5. The reductase was found to have a Km value for NADH of 22 microM. The oxidation of NADH was determined to be stereospecific; the enzyme is pro-R (class A enzyme). The titration of the reductase with NADH or dithionite yielded three distinct reduced forms of the enzyme: the reduction of the [2Fe-2S] center occurred with a midpoint redox potential of -171 mV; and the reduction of FAD to FAD. (semiquinone form), with a calculated midpoint redox potential of -244 mV. The reduction of FAD. to FAD.. (dihydroquinone form), the last stage of the titration, occurred with a midpoint redox potential of -297 mV. The [2Fe-2S] center could be removed from the protein by treatment with an excess of mersalyl acid. The [2Fe-2S]-depleted protein was still reduced by NADH, giving rise to the formation of the anionic flavin semiquinone observed in the native enzyme, thus suggesting that the electron flow was NADH --> FAD --> [2Fe-2S] in this reductase. The resulting protein could no longer reduce cytochrome c, but could reduce 2,6-dichloroindophenol at a reduced rate.  相似文献   

8.
Midpoint reduction potentials for the flavin cofactors in human NADPH-cytochrome P450 oxidoreductase were determined by anaerobic redox titration of the diflavin (FAD and FMN) enzyme and by separate titrations of its isolated FAD/NADPH and FMN domains. Flavin reduction potentials are similar in the isolated domains (FAD domain E(1) [oxidized/semiquinone] = -286 +/- 6 mV, E(2) [semiquinone/reduced] = -371 +/- 7 mV; FMN domain E(1) = -43 +/- 7 mV, E(2) = -280 +/- 8 mV) and the soluble diflavin reductase (E(1) [FMN] = -66 +/- 8 mV, E(2) [FMN] = -269 +/- 10 mV; E(1) [FAD] = -283 +/- 5 mV, E(2) [FAD] = -382 +/- 8 mV). The lack of perturbation of the individual flavin potentials in the FAD and FMN domains indicates that the flavins are located in discrete environments and that these environments are not significantly disrupted by genetic dissection of the domains. Each flavin titrates through a blue semiquinone state, with the FMN semiquinone being most intense due to larger separation (approximately 200 mV) of its two couples. Both the FMN domain and the soluble reductase are purified in partially reduced, colored form from the Escherichia coli expression system, either as a green reductase or a gray-blue FMN domain. In both cases, large amounts of the higher potential FMN are in the semiquinone form. The redox properties of human cytochrome P450 reductase (CPR) are similar to those reported for rabbit CPR and the reductase domain of neuronal nitric oxide synthase. However, they differ markedly from those of yeast and bacterial CPRs, pointing to an important evolutionary difference in electronic regulation of these enzymes.  相似文献   

9.
Human novel reductase 1 (NR1) is an NADPH dependent diflavin oxidoreductase related to cytochrome P450 reductase (CPR). The FAD/NADPH- and FMN-binding domains of NR1 have been expressed and purified and their redox properties studied by stopped-flow and steady-state kinetic methods, and by potentiometry. The midpoint reduction potentials of the oxidized/semiquinone (-315 +/- 5 mV) and semiquinone/dihydroquinone (-365 +/- 15 mV) couples of the FAD/NADPH domain are similar to those for the FAD/NADPH domain of human CPR, but the rate of hydride transfer from NADPH to the FAD/NADPH domain of NR1 is approximately 200-fold slower. Hydride transfer is rate-limiting in steady-state reactions of the FAD/NADPH domain with artificial redox acceptors. Stopped-flow studies indicate that hydride transfer from the FAD/NADPH domain of NR1 to NADP+ is faster than hydride transfer in the physiological direction (NADPH to FAD), consistent with the measured reduction potentials of the FAD couples [midpoint potential for FAD redox couples is -340 mV, cf-320 mV for NAD(P)H]. The midpoint reduction potentials for the flavin couples in the FMN domain are -146 +/- 5 mV (oxidized/semiquinone) and -305 +/- 5 mV (semiquinone/dihydroquinone). The FMN oxidized/semiquinone couple indicates stabilization of the FMN semiquinone, consistent with (a) a need to transfer electrons from the FAD/NADPH domain to the FMN domain, and (b) the thermodynamic properties of the FMN domain in CPR and nitric oxide synthase. Despite overall structural resemblance of NR1 and CPR, our studies reveal thermodynamic similarities but major kinetic differences in the electron transfer reactions catalysed by the flavin-binding domains.  相似文献   

10.
The absorbance contributions of the FAD and Fe2S2 redox centres of component C of the soluble methane monooxygenase complex have been resolved, using mersalyl to destroy the Fe2S2 centre. The Fe2S2 seems to be very similar to that of spinach ferredoxin, by its absorbance and electron paramagnetic resonance (EPR) spectra, and the FAD semiquinone is a neutral semiquinone. Spectrophotometry near room temperature and EPR spectroscopy near liquid-helium temperature allow the three redox couples of component C to be ordered. Component C can exist in Oe-1 (oxidised), 1e-1 (semiquinone), 2e-1 (mostly semiquinone and reduced Fe2S2), and 3e-1 forms (dihydroquinone and reduced Fe2S2), under equilibrium conditions. The ability of component C to support odd-electron forms is consistent with its proposed role as a 2e-1/1e-1 transformase, splitting electron pairs from NADH for passage to component A in one-electron steps. (The FAD appears to interact with NADH, and transfers single electrons to the Fe2S2, for donation to component A at a constant redox potential.) The mid-point potentials of component C were found using redox dyes and EPR spectroscopy and were: FAD/FAD., Em = -150 mV; Fe2S2/Fe2.S2,Em = -220 mV; FAD./FAD..,Em = -260 mV. the presence of NADH did not alter these mid-point potentials. These mid-point potentials are consistent with the role of component C as the NADH:component A reductase, passing electrons from NADH (Em = -320 mV) onto component A (Em = +150 mV and Em = -150 mV). The reducing power from NADH appears to be required by component A to activate one atom of oxygen, to insert into methane, and the reducing equivalents derived from NADH end up with the other oxygen atom, as water.  相似文献   

11.
Garnaud PE  Koetsier M  Ost TW  Daff S 《Biochemistry》2004,43(34):11035-11044
Electron transfer through neuronal nitric oxide synthase (nNOS) is regulated by the reversible binding of calmodulin (CaM) to the reductase domain of the enzyme, the conformation of which has been shown to be dependent on the presence of substrate, NADPH. Here we report the preparation of the isolated flavin mononucleotide (FMN)-binding domain of nNOS with bound CaM and the electrochemical analysis of this and the isolated flavin adenine dinucleotide (FAD)-binding domain in the presence and absence of NADP(+) and ADP (an inhibitor). The FMN-binding domain was found to be stable only in the presence of bound CaM/Ca(2+), removal of which resulted in precipitation of the protein. The FMN formed a kinetically stabilized blue semiquinone with an oxidized/semiquinone reduction potential of -179 mV. This is 80 mV more negative than the potential of the FMN in the isolated reductase domain, that is, in the presence of the FAD-binding domain. The FMN semiquinone/hydroquinone redox couple was found to be similar in both constructs. The isolated FAD-binding domain, generated by controlled proteolysis of the reductase domain, was found to have similar FAD reduction potentials to the isolated reductase domain. Both formed a FAD-hydroquinone/NADP(+) charge-transfer complex with a long-wavelength absorption band centered at 780 nm. Formation of this complex resulted in thermodynamic destabilization of the FAD semiquinone relative to the hydroquinone and a 30 mV increase in the FAD semiquinone/hydroquinone reduction potential. Binding of ADP, however, had little effect. The possible role of the nicotinamide/FADH(2) stacking interaction in controlling electron transfer and its likely dependence on protein conformation are discussed.  相似文献   

12.
The flavoenzyme glutathione reductase catalyses electron transfer reactions between two major intracellular redox buffers, namely the NADPH/NADP+ couple and the 2 glutathione/glutathione disulfide couple. On this account, microcrystals of the enzyme were tested as redox probes of intracellular compartments. For introducing protein crystals into human fibroblasts, different methods (microinjection, particle bombardment and optical tweezers) were explored and compared. When glutathione reductase crystals are present in a cytosolic environment, the transition of the yellow Eox form to the orange-red 2-electron reduced charge transfer form, EH2, is observed. Taking into account the midpoint potential of the Eox/EH2 couple, the redox potential of the cytosol was found to be < -270 mV at pH 7.4 and 37 degrees C. As a general conclusion, competent proteins in crystalline--that is signal-amplifying--form are promising probes for studying intracellular events.  相似文献   

13.
The oxidation-reduction potentials of ferredoxin-NADP+ reductase and flavodoxin from the cyanobacterium Anabaena PCC 7119 were determined by potentiometry. The potentials at pH 7 for the oxidized flavodoxin/flavodoxin semiquinone couple (E2) and the flavodoxin semiquinone/hydroquinone couple (E1) were -212 mV and -436 mV, respectively. E1 was independent of pH above about pH 7, but changed by approximately -60 mV/pH below about pH 6, suggesting that the fully reduced protein has a redox-linked pKa at about 6.1, similar to those of certain other flavodoxins. E2 varied by -50 mV/pH in the range pH 5-8. The redox potential for the two-electron reduction of ferredoxin-NADP+ reductase was -344 mV at pH 7 (delta Em = -30 mV/pH). In the 1:1 electrostatic complex of the two proteins titrated at pH 7, E2 was shifted by +8 mV and E1 was shifted by -25 mV; the shift in potential for the reductase was +4 mV. The potentials again shifted following treatment of the electrostatic complex with a carbodiimide, to covalently link the two proteins. By comparison with the separate proteins at pH 7, E2 for flavodoxin shifted by -21 mV and E1 shifted by +20 mV; the reductase potential shifted by +2 mV. The potentials of the proteins in the electrostatic and covalent complexes showed similar pH dependencies to those of the individual proteins. Qualitatively similar changes occurred when ferredoxin-NADP+ reductase from Anabaena variabilis was complexed with flavodoxin from Azotobacter vinelandii. The shifts in redox potential for the complexes were used with previously determined values for the dissociation constant (Kd) of the electrostatic complex of the two oxidised proteins, in order to estimate Kd values for the interaction of the different redox forms of the proteins. The calculations showed that the electrostatic complexes, formed when the proteins differ in their redox states, are stronger than those formed when both proteins are fully oxidized or fully reduced.  相似文献   

14.
T Iyanagi 《Biochemistry》1977,16(12):2725-2730
Hepatic NADH-cytochrome b5 reductase was reduced by 1 mol of dithionite or NADH per mol of enzyme-bound FAD, without forming a stable semiquinone or intermediate during the titrations. However, the addition of NAD+ to the partially reduced enzyme or illumination in the presence of both NAD+ and EDTA yielded a new intermediate. The intermediate had an absorption band at 375 nm and the optical spectrum resembled anionic semiquinones seen on reduction of other flavin enzymes. Electron paramagnetic resonance measurements confirmed the free-radical nature of the species. To explain the results, a disproportionation reaction between the oxidized and reduced NAD+ complexes (E-FAD-NAD+ + E-FADH2-NAD+ in equilibrium 2E-FADH.-NAD+) is assumed. Potentiometric titration of NADH-cytochrome b5 reductase at pH 7.0 with dithionite gave a midpoint potential of -258 mV; titration with NADH gave -160 mV. This difference may be due to a difference in the relative affinity of NAD+ for the reduced and oxidized forms of the enzyme. The effects of pH on the midpoint potential of the NAD+-free enzyme were very similar to those which have been measured with free FAD. At pH 7.0, midpoint potentials of trypsin-solubilized and detergent-solubilized cytochrome b5 were 13 and 0 mV, respectively.  相似文献   

15.
The arsenate reductase from the cyanobacterium Synechocystis sp. PCC 6803 has been characterized in terms of the redox properties of its cysteine residues and their role in the reaction catalyzed by the enzyme. Of the five cysteines present in the enzyme, two (Cys13 and Cys35) have been shown not to be required for catalysis, while Cys8, Cys80 and Cys82 have been shown to be essential. The as-isolated enzyme contains a single disulfide, formed between Cys80 and Cys82, with an oxidation-reduction midpoint potential (E(m)) value of -165mV at pH 7.0. It has been shown that Cys15 is the only one of the four cysteines present in Synechocystis sp. PCC 6803 glutaredoxin A required for its ability to serve as an electron donor to arsenate reductase, while the other three cysteines (Cys18, Cys36 and Cys70) play no role. Glutaredoxin A has been shown to contain a single redox-active disulfide/dithiol couple, with a two-electron, E(m) value of -220mV at pH 7.0. One cysteine in this disulfide/dithiol couple has been shown to undergo glutathionylation. An X-ray crystal structure, at 1.8? resolution, has been obtained for glutaredoxin A. The probable orientations of arsenate reductase disulfide bonds present in the resting enzyme and in a likely reaction intermediate of the enzyme have been examined by in silico modeling, as has the surface environment of arsenate reductase in the vicinity of Cys8, the likely site for the initial reaction between arsenate and the enzyme.  相似文献   

16.
The redox properties of D-amino acid oxidase (D-amino-acid: O2 oxidoreductase (deaminating) EC1.4.3.3) have been measured at 18 degrees C in 20 mM sodium pyrophosphate, pH 8.5, and in 50 mM sodium phosphate, pH 7.0. Over the entire pH range, 2 eq are required per mol of FAD in D-amino acid oxidase for reduction to the anion dihydroquinone. The red anion semiquinone is thermodynamically stable as indicated by the separation of the electron potentials and the quantitative formation of the semiquinone species. The first electron potential is pH-independent at -0.098 +/- 0.004 V versus SHE while the second electron potential is pH-dependent exhibiting a 0.060 mV/pH unit slope. The redox behavior of D-amino acid oxidase is consistent with that observed for other oxidase enzymes. On the other hand, the behavior of the benzoate-bound enzyme under the same conditions is in marked contrast to the thermodynamics of free D-amino acid oxidase. Spectroelectrochemical experiments performed on inhibitor-bound (benzoate) D-amino acid oxidase show that benzoate binding regulates the redox properties of the enzyme, causing the energy levels of the benzoate-bound enzyme to be consistent with the two-electron transfer catalytic function of the enzyme. Our data are consistent with benzoate binding at the enzyme active site destroying the inductive effect of the positively charged arginine residue. Others have postulated that this positively charged group near the N(1)C(2) = O position of the flavin controls the enzyme properties. The data presented here are the clearest examples yet of enzyme regulation by substrate which may be a general characteristic of all flavoprotein oxidases.  相似文献   

17.
The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.  相似文献   

18.
A stable apoprotein has been prepared from a soluble purified bovine thyroid iodotyrosine deiodinase, previously shown to be an FMN-containing flavoprotein requiring dithionite for enzymatic activities. The apoprotein binds FMN (Ka = 1.47 x 10(8) M-1) with an almost complete restoration of enzymatic activity. It can also bind FAD (Ka = 0.58 x 10(8) M-1) with partial restoration of activity, but does not bind riboflavin. Photoreduction of the holoenzyme in presence of excess of its free cofactor, FMN, supported enzyme activity at a level of 50% of that obtained with dithionite; substituting FAD or riboflavin for FMN produced, respectively, 20 and 11% of the dithionite-supported activity. The oxidation-reduction potential (E1) of the couple semiquinone/fully reduced enzyme is -0.412 V at pH 7 and 25 degrees C. The value (E2) for the oxidized/semiquinone couple is -0.190 V at pH 7 and 25 degrees C. Potentiometric titrations with sodium hydrosulfite suggests that the enzyme is reduced in two successive 1-electron oxidation-reduction steps. Effects of pH on E1 suggest ionization of the protonated flavin with an ionization constant of 5.7 x 10(-7). The highly negative oxidation-reduction potential for the fully reduced enzyme species and the apparent requirement for full reduction for enzymatic activity suggests that in NADPH-mediated microsomal deiodination an NADPH-linked electron carrier of suitably negative midpoint potential is a probable intermediate.  相似文献   

19.
M D Distefano  K G Au  C T Walsh 《Biochemistry》1989,28(3):1168-1183
Mercuric reductase, a flavoenzyme that possess a redox-active cystine, Cys135Cys140, catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, we have constructed mutants lacking a redox-active disulfide by eliminating Cys135 (Ala135Cys140), Cys140 (Cys135Ala140), or both (Ala135Ala140). Additionally, we have made double mutants that lack Cys135 (Ala135Cys139Cys140) or Cys140 (Cys135Cys139Ala140) but introduce a new Cys in place of Gly139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. These differences are manifested in a 23-nm range in enzyme-bound FAD lambda max values, an 80-nm range in thiolate to flavin charge-transfer absorbance maxima, and a ca. 100-mV range in FAD reduction potential. Preliminary evidence for the Ala135Cys139Cys140 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala135Cys140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. For these activities, there is a linear correlation between log kappa cat and enzyme-bound FAD reduction potential. In a sensitive Hg(II)-mediated enzyme-bound FADH2 reoxidation assay, all mutant enzymes were able to undergo at least one catalytic event at rates 50-1000-fold slower than that of the wild-type enzyme. We have also observed the reduction of Hg(II) by free FADH2. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. We conclude that the Cys135 and Cys140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate.  相似文献   

20.
Thioredoxin reductase (TrxR) from Escherichia coli consists of two globular domains connected by a two-stranded beta sheet: an FAD domain and a pyridine nucleotide binding domain. The latter domain contains the redox-active disulfide composed of Cys 135 and Cys 138. TrxR is proposed to undergo a conformational change whereby the two domains rotate 66 degrees relative to each other (Waksman G, Krishna TSR, Williams CH Jr, Kuriyan J, 1994, J Mol Biol 236:800-816), placing either redox active disulfide (FO conformation) or the NADPH binding site (FR conformation) adjacent to the flavin. This domain rotation model was investigated by using a Cys 138 Ser active-site mutant. The flavin fluorescence of this mutant is only 7% that of wild-type TrxR, presumably due to the proximity of Ser 138 to the flavin in the FO conformation. Reaction of the remaining active-site thiol, Cys 135, with phenylmercuric acetate (PMA) causes a 9.5-fold increase in fluorescence. Titration of the PMA-treated mutant with the nonreducing NADP(H) analogue, 3-aminopyridine adenine dinucleotide phosphate (AADP+), results in significant quenching of the flavin fluorescence, which demonstrates binding adjacent to the FAD, as predicted for the FR conformation. Wild-type TrxR, with or without PMA treatment, shows similar quenching by AADP+, indicating that it exists mostly in the FR conformer. These findings, along with increased EndoGluC protease susceptibility of PMA-treated enzymes, agree with the model that the FO and FR conformations are in equilibrium. PMA treatment, because of steric limitations of the phenylmercuric adduct in the FO form, forces the equilibrium to the FR conformer, where AADP+ binding can cause fluorescence quenching and conformational restriction favors proteolytic susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号