首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4 to a size of 1–10 units. The residual number of D4Z4 units inversely correlates with clinical severity, but significant clinical variability exists. Each unit contains a copy of the DUX4 retrogene. Repeat contractions are associated with changes in D4Z4 chromatin structure that increase the likelihood of DUX4 expression in skeletal muscle, but only when the repeat resides in a genetic background that contains a DUX4 polyadenylation signal. Mutations in the structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) gene, encoding a chromatin modifier of D4Z4, also result in the increased likelihood of DUX4 expression in individuals with a rare form of FSHD (FSHD2). Because SMCHD1 directly binds to D4Z4 and suppresses somatic expression of DUX4, we hypothesized that SMCHD1 may act as a genetic modifier in FSHD1. We describe three unrelated individuals with FSHD1 presenting an unusual high clinical severity based on their upper-sized FSHD1 repeat array of nine units. Each of these individuals also carries a mutation in the SMCHD1 gene. Familial carriers of the FSHD1 allele without the SMCHD1 mutation were only mildly affected, suggesting a modifier effect of the SMCHD1 mutation. Knocking down SMCHD1 in FSHD1 myotubes increased DUX4 expression, lending molecular support to a modifier role for SMCHD1 in FSHD1. We conclude that FSHD1 and FSHD2 share a common pathophysiological pathway in which the FSHD2 gene can act as modifier for disease severity in families affected by FSHD1.  相似文献   

2.
3.
The spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of disorders characterized by degeneration and loss of anterior horn cells in the spinal cord, leading to muscle weakness and atrophy. Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH, also known as pontocerebellar hypoplasia type 1 [PCH1]) is one of the rare infantile SMA variants that include additional clinical manifestations, and its genetic basis is unknown. We used a homozygosity mapping and positional cloning approach in a consanguineous family of Ashkenazi Jewish origin and identified a nonsense mutation in the vaccinia-related kinase 1 gene (VRK1) as a cause of SMA-PCH. VRK1, one of three members of the mammalian VRK family, is a serine/threonine kinase that phosphorylates p53 and CREB and is essential for nuclear envelope formation. Its identification as a gene involved in SMA-PCH implies new roles for the VRK proteins in neuronal development and maintenance and suggests the VRK genes as candidates for related phenotypes.  相似文献   

4.
5.
Fibroblast growth factors (FGFs) play diverse roles in several developmental processes. Mutations leading to deregulated FGF signaling can cause human skeletal dysplasias and cancer.1,2 Here we report a missense mutation (Ser99Asp) in exon 2 of FGF9 in 12 patients with multiple synostoses syndrome (SYNS) in a large Chinese family. In vitro studies demonstrate that FGF9S99N is expressed and secreted as efficiently as wild-type FGF9 in transfected cells. However, FGF9S99N induces compromised chondrocyte proliferation and differentiation, which is accompanied by enhanced osteogenic differentiation and matrix mineralization of bone marrow-derived mesenchymal stem cells (BMSCs). Biochemical analysis reveals that S99N mutation in FGF9 leads to significantly impaired FGF signaling, as evidenced by diminished activity of Erk1/2 pathway and decreased β-catenin and c-Myc expression when compared with wild-type FGF9. Importantly, the binding of FGF9S99N to its receptor is severely impaired although the dimerization ability of mutant FGF9 itself or with wild-type FGF9 is not detectably affected, providing a basis for the defective FGFR signaling. Collectively, our data demonstrate a previously uncharacterized mutation in FGF9 as one of the causes of SYNS, implicating an important role of FGF9 in normal joint development.  相似文献   

6.
Background:Junctional epidermolysis bullosa (JEB) is an autosomal recessive skin disorder with defective adhesion of dermal- epidermal within the lamina lucida region of the basement membrane zone. The main characterization of JEB is blistering and fragile skin and mucous membrane. Laminins are noncollagenous part of basement membrane and classified as a family of extracellular matrix glycoprotein. Laminins contain three chains: Laminin α, Laminin β and Laminin γ. LAMC2 (laminin subunit gamma 2) gene encodes γ subunit of laminin and its mutation contributes to JEB. Here, we report a disease-causing nonsense mutation and a large deletion mutation in LAMC2 gene in two families affected by JEB.Methods:Whole exome sequencing (WES) was carried out on the mother of patient in family I and the patient himself in family II to detect the underlying mutations. Then, sanger sequencing was performed to confirm the identified mutations.Results:Next generation sequencing (NGS) data analysis of the first family showed a novel, nonsense mutation in LAMC2 gene (LAMC2: NM_005562: exon14:c.C2143T: p.R715X). The heterozygous state of the mutation was confirmed by sanger sequencing in the parents and unaffected brother. In Family II, NGS data had no coverage in the large area of LAMC2 gene. Thus, to confirm the possible deletion sanger sequencing was done and blasting of sequence showed the deleted region of 9.4 kb (exon10-17) in LAMC2 gene.Conclusion:In summary, current study reported a novel disease-causing premature termination codon (PTC) mutation in LAMC2 gene and a large deletion mutation in patients affected by JEB.Key Words: Junctional Epidermolysis Bullosa, LAMC2 gene, Novel mutation, Skin disorder  相似文献   

7.
8.
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1.  相似文献   

9.
10.
11.
Cranioectodermal dysplasia (CED) is a disorder characterized by craniofacial, skeletal, and ectodermal abnormalities. Most cases reported to date are sporadic, but a few familial cases support an autosomal-recessive inheritance pattern. Aiming at the elucidation of the genetic basis of CED, we collected 13 patients with CED symptoms from 12 independent families. In one family with consanguineous parents two siblings were affected, permitting linkage analysis and homozygosity mapping. This revealed a single region of homozygosity with a significant LOD score (3.57) on chromosome 3q21-3q24. By sequencing candidate genes from this interval we found a homozygous missense mutation in the IFT122 (WDR10) gene that cosegregated with the disease. Examination of IFT122 in our patient cohort revealed one additional homozygous missense change in the patient from a second consanguineous family. In addition, we found compound heterozygosity for a donor splice-site change and a missense change in one sporadic patient. All mutations were absent in 340 control chromosomes. Because IFT122 plays an important role in the assembly and maintenance of eukaryotic cilia, we investigated patient fibroblasts and found significantly reduced frequency and length of primary cilia as compared to controls. Furthermore, we transiently knocked down ift122 in zebrafish embryos and observed the typical phenotype found in other models of ciliopathies. Because not all of our patients harbored mutations in IFT122, CED seems to be genetically heterogeneous. Still, by identifying CED as a ciliary disorder, our study suggests that the causative mutations in the unresolved cases most likely affect primary cilia function too.  相似文献   

12.
13.
14.
15.
BackgroundCirculating angiopoietin-1 (Ang-1) has been linked to pulmonary hypertension (PH) in experimental studies. However, the clinical relevance of Ang-1 as a biomarker in PH remains unknown. We aimed to investigate the prognostic and clinical significance of Ang-1 in PH using data from the prospectively recruiting Giessen PH Registry.MethodsPatients with suspected PH (without previous specific pulmonary arterial hypertension [PAH] therapy) who underwent initial right heart catheterization (RHC) in our national referral center between July 2003 and May 2012 and who agreed to optional biomarker analysis were included if they were diagnosed with idiopathic PAH, connective tissue disease-associated PAH (CTD-PAH), PH due to left heart disease (PH-LHD), or chronic thromboembolic PH (CTEPH), or if PH was excluded by RHC (non-PH controls). The association of Ang-1 levels with disease severity (6-minute walk distance and pulmonary hemodynamics) was assessed using linear regression, and the impact of Ang-1 levels on transplant-free survival (primary endpoint) and clinical worsening was assessed using Kaplan—Meier curves, receiver operating characteristic (ROC) analyses, and Cox regression.Results151 patients (39, 39, 32, and 41 with idiopathic PAH, CTD-PAH, PH-LHD, and CTEPH, respectively) and 41 non-PH controls were included. Ang-1 levels showed no significant difference between groups (p = 0.8), and no significant associations with disease severity in PH subgroups (p ≥ 0.07). In Kaplan—Meier analyses, Ang-1 levels (stratified by quartile) had no significant impact on transplant-free survival (p ≥ 0.27) or clinical worsening (p ≥ 0.51) in PH subgroups. Regression models found no significant association between Ang-1 levels and outcomes (p ≥ 0.31). ROC analyses found no significant cut-off that would maximize sensitivity and specificity.ConclusionsDespite a strong pathophysiological association in experimental studies, this first comprehensive analysis of Ang-1 in PH subgroups suggests that Ang-1 is not a predictive and clinically relevant biomarker in PH.  相似文献   

16.
17.
18.
MTG8(HGMW-approved symbolCBFA2T1) was originally identified as one of the loci involved in the t(8;21)(q22;q22) of acute myeloid leukemia. We characterize two humanMTG8-related genes,MTGR1andMTGR2(HGMW-approved symbolsCBFA2T2andCBFA2T3). The former is duplicated in mouse, one locus possibly being a retroposon. MultipleMTG8-related sequences are found in several vertebrate species, from fish to mammals, albeit not in a urodele.MTGR2maps to 16q24 and, likeMTG8andMTGR1,is close to one of three loci encoding a syntrophin (dystrophin-associated proteins). Moreover, an alternativeMTGR1promoter/5′ exon is contained within the α1-syntrophin locus. Thus, the two classes of genes may define novel paralogous groups.MTGR1is expressed mainly in brain, whileMTGR2is expressed in the thymus and possibly in monocytes. LikeMTG8, MTGR1is transcribed into a number of isoforms due to alternative splicing of different 5′ exons onto a common splice acceptor site. Comparison of the three predicted human MTG8-related polypeptides to theirDrosophilacounterpart (nervy) highlights four separate regions of sequence conservation that may correspond to distinct domains. The most NH2-terminal of these is proportionately more conserved among the human polypeptides, presumably due to specific structural/functional constraints.  相似文献   

19.
Developmental Dyslexia (DD) is a heritable, complex genetic disorder characterized by specific impairment in reading and writing ability that is substantially below the expected reading ability given the person's chronological age, measured intelligence and age-appropriate education. More than ten susceptible genes have been identified for DD. A Single Nucleotide Polymorphism (SNP) of these genes was found to be associated with various phenotypes of DD. To identify the role of SNPs of four candidate genes namely, MRPL19/C2ORF3, ROBO1 and THEM2 in an Indian population, we genotyped eight SNPs of these genes in 157 children with DD and 212 normal readers using a MassARRAY technique with a MALDI-TOF MS analyzer. Power analysis of some of these SNPs showed > 80% of power. Chi-square test, Odds Ratios (ORs), 95% Confidence Intervals (CIs) and Bonferroni's correction were applied to identify the significance of the genotyped SNPs and haplotypes. Our study failed to show any association of SNPs and haplotypes of these genes with DD in an Indian population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号