首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E Reisler  J Liu  P Cheung 《Biochemistry》1983,22(21):4954-4960
The effect of Mg2+ on the disposition of myosin cross-bridges was studied on myofibrils and synthetic myosin and rod filaments by employing chymotryptic digestion and chemical cross-linking methods. In the presence of low Mg2+ concentrations (0.1 mM), the proteolytic susceptibility at the heavy meromyosin/light meromyosin (HMM/LMM) junction in these three systems sharply increases over the pH range from 7.0 to 8.2. Such a change has been previously associated with the release of myosin cross-bridges from the filament surface [Ueno, H., & Harrington, W.F. (1981) J. Mol. Biol. 149, 619-640]. Millimolar concentrations of Mg2+ block or reverse this charge-dependent transition. Rod filaments show the same behavior as myosin filaments, indicating that the low-affinity binding sites for Mg2+ are located on the rod portion of myosin. The interpretation of these results in terms of Mg2+-mediated binding of cross-bridges to the filament backbone is supported by cross-linking experiments. The normalized rate of S-2 cross-linking in rod filaments at pH 8.0, kS-2/kLMM, increases upon addition of Mg2+ from 0.30 to 0.65 and approaches the cross-linking rate measured at pH 7.0 (0.75), when the cross-bridges are close to the filament surface. In rod filaments prepared from oxidized rod particles, chymotryptic digestion proceeds both at the S-2/LMM junction and at a new cleavage site located in the N-terminal portion of the molecule. Kinetic analysis of digestion rates at these two sites reveals that binding of Mg2+ to oxidized myosin rods has a similar effect at both sites over the pH range from 7.0 to 8.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Using three independent methods tte amperometric titration, Boyer's method and the method of Ellman it is shown that rabbit muscle creatine kinase contains 11-12 SH-groups, 3-6 of which are easily oxidized by atmospheric oxygen to form S-S-bonds. It is found that creatine kinase has four types of SH-groups distinguished by their accessibility to different SH-reagents. The first type related to the enzymatic activity is detected by the Ellman method (2 SH-groups), the first and the second ones taken together--by the Boyer method (4 SH-groups), the first, second and third ones--by the method of amperometric titration (6 SH-groups), all the 4 types together--when detecting SH-groups after protein denaturation--by any of the above methods (8-12 SH-groups).  相似文献   

3.
Modification of histidine residues, SH- and epsilon-NH2-groups of myosin from rat sarcoma-45 by specific reagents was studied. It was shown that diethylpyrocarbonate modifies histidine residues essential for the ATPase activity. A kinetic analysis of myosin epsilon-NH2-groups modification by 2,4,6-trinitrobenzene sulfonate revealed that myosin trinitrophenylation and its inactivation by Ca2(+)-ATPase occurs in two steps: a fast and a slow (Km = 2400 and 1.7 s-1 M-1, respectively). Two essential epsilon-NH2-groups of tumour myosin active sites react in the fast reaction. The relatively low concentrations of p-chloromercuribenzoic acid activate rat sarcoma-45 myosin Ca2(+)-ATPase and Mg2(+)-ATPase, whereas higher ones inhibit the enzyme. The data obtained suggest that two SH-groups, SH1 and SH2 are essential for the tumour myosin ATPase function.  相似文献   

4.
The content of SH-groups and substrate specificity have been studied in purified preparations of monoamine oxidase (MAO) from human brain. It has been shown that both in schizophrenic and mentally normal persons MAO occurs in a partially oxidized state. The enzyme contains 2 SH-groups per 10(5) daltons of protein and deaminates MAO substrates (serotonin, beta-phenylethylamine) along with histamine, diamine oxidase substrate. Reduction of the partially oxidized SH-groups of MAO in schizophrenics up to 15 SH-groups per 10(5) daltons of protein (the normal value for human brain MAO) does not eliminate the histamine deaminase activity as is the case in experiments with MAO from the normal brain but, on the contrary, considerably potentiates it. The data suggest certain structural alteration of MAO in schizophrenia.  相似文献   

5.
Using glycerinated muscle fibers, free of myosin, tropomyosin and troponin, a study was made of the structural state of F-actin modified by N-(iodoacetyl)-N'-(1-naphthyl-5-sulfo)-ethylendiamine (1.5-IAEDANS) and by rhodaminyl--phalloin at decoration of thin filaments with a proteolytic fragment of myosin--heavy meromyosin containing phosphorylated and dephosphorylated myosin light chains. The heavy meromyosin used has three SH-groups of heavy chain SH1, SH2 and SH chi modified by bifunctional reagent N,N'-n-phenylmaleimide (SH1-SH2, SH2-SH chi). At decoration of thin filaments with heavy meromyosin, some changes in polarized fluorescence of rhodaminyl--phalloin and 1.5-IAEDANS independent of phosphorylation of myosin light chains were found. Fluorescence anisotropy of the fiber was found to depend primarily on the character of heavy chain of SH-group modification. The ability of heavy chains to change their conformations is supposed to play an important role in the mechanism of myosin system modulation of muscle contraction.  相似文献   

6.
The question of hinging in myosin rod from rabbit skeletal muscle has been reexamined. Elastic light scattering and optical rotation have been used to measure the radius of gyration and fraction helix, respectively, as a function of temperature for myosin rod, light meromyosin (LMM), and long subfragment 2 (long S-2). The radius of gyration vs temperature profile of myosin rod is shifted with respect to the optical rotation melting curve by about -5 degrees C. Similar studies on both LMM and long S-2 show virtually superimposable profiles. To correlate changes in the secondary structure with the overall conformation, plots of radius of gyration vs fraction helix are presented for each myosin subfragment. Myosin rod exhibits a marked decrease in the radius of gyration from 43 nm to approximately 35 nm, while the fraction helix remains at nearly 100%. LMM and long S-2 did not show this behavior. Rather, a decrease in the radius of gyration of these fragments occurred with comparable changes in fraction helix. These results are interpreted in terms of hinging of the myosin rod within the LMM/S-2 junction.  相似文献   

7.
Incubation of human erythrocytes oxidized by iron catalysts, ADP/Fe3+ or xanthine/xanthine oxidase/Fe3+, with autologous IgG resulted in IgG binding as detected by enzyme immunoassay using protein A-beta-galactosidase conjugate. The binding of autologous IgG to ADP/Fe3(+)-treated erythrocytes maximized when the cells were treated with 1.8:0.1 mM ADP/Fe3+, and declined when treated above this concentration, suggesting that autologous IgG binds to moderately but not to excessively oxidized erythrocytes. The antibody involved in the binding was anti-Band 3, the autoantibody known to bind to aged erythrocytes, because isolated anti-Band 3 bound to the oxidized cells, but anti-Band 3-depleted autologous IgG did not. In addition, purified Band 3 inhibited the autologous IgG binding. Anti-alpha-galactosyl IgG, another natural antibody which has been reported to bind to aged erythrocytes, did not bind to the oxidized cells. Oxidation of membrane lipids, SH-groups of membrane proteins, and Hb of these cells was slight, but the cells contained an increased amount of membrane-bound native Hb, indicating that the oxidized cell membrane has an altered property. alpha-Tocopherol prevented the lipid oxidation and the subsequent IgG binding. Reduction of the oxidized erythrocytes with dithiothreitol resulted in a loss of the IgG binding. These results suggest that anti-Band 3 binding sites (Band 3 senescent antigen) are formed on moderately oxidized erythrocytes as a result of oxidation of membrane protein SH-groups which can be mediated by the membrane lipid oxidation and that formation of the anti-Band 3 binding sites on the oxidized cells is an essentially reversible membrane event which is linked to oxidation and restoration of the protein SH-groups.  相似文献   

8.
To determine the localization of F-protein binding sites on myosin, the interaction of F-protein with myosin and its proteolytic fragments in 0.1 M KCl, 10 mM K-phosphate pH 6.5 was studied, using sedimentation, electron microscopic and optical diffraction methods. Sedimentation experiments showed that F-protein binds to myosin and myosin rod rather than to light meromyosin or S-1. The F-protein binding to myosin and rod is of a similar character. The calculated values of the constants of F-protein binding to myosin and rod are 2.6 X 10(5) M-1 and 2.1 X 10(5) M-1, respectively. The binding sites are probably located on the subfragment-2 portion of the myosin molecule. The number of F-protein binding sites on myosin calculated per chain weight of 80 000 is 5 +/- 1. The sedimentation results were confirmed by electron microscopic data. F-protein does not bind to light meromyosin paracrystals, but decorates myosin and rod filaments with the interval of 14.3 nm regardless of whether F-protein is added before or after filamentogenesis. A comparison of optical diffraction patterns obtained from myosin and rod filaments with those from decorated ones revealed a marked enhancement of meridional reflection at (14.3 nm)-1 in the latter case.  相似文献   

9.
To function in the cell, nonmuscle myosin II molecules assemble into filaments through their C-terminal tails. Because myosin II isoforms most likely assemble into homo-filaments in vivo, it seems that some self-recognition mechanisms of individual myosin II isoforms should exist. Exogenous expression of myosin IIB rod fragment is thus expected to prevent the function of myosin IIB specifically. We expected to reveal some self-recognition sites of myosin IIB from the phenotype by expressing appropriate myosin IIB rod fragments. We expressed the C-terminal 305-residue rod fragment of the myosin IIB heavy chain (BRF305) in MRC-5 SV1 TG1 cells. As a result, unstable morphology was observed like MHC-IIB(-/-) fibroblasts. This phenotype was not observed in cells expressing BRF305 mutants: 1) with a defect in assembling, 2) lacking N-terminal 57 residues (N-57), or 3) lacking C-terminal 63 residues (C-63). A myosin IIA rod fragment ARF296 corresponding to BRF305 was not effective. However, the chimeric ARF296, in which the N-57 and C-63 of BRF305 were substituted for the corresponding regions of ARF296, acquired the ability to induce unstable morphology. We propose that the N-57 and C-63 of BRF305 are involved in self-recognition when myosin IIB molecules assemble into homo-filament.  相似文献   

10.
Popular views of force generation in muscle indicate that a lever arm in the myosin head initiates displacement of the thin filament. However, this lever arm is attached to the thick filament backbone by a flexible combination of coiled coils and hinges in the myosin subfragment-2 (S2); therefore, efficient force generation depends on tension development in this linking structure. Herein, a single molecule assay is developed to examine the flexibility of the intact S2 relative to that of the myosin head. Fluorescently labeled myosin rod is polymerized onto a single myosin molecule that is bound to actin, and the resulting Brownian motion of the rod is analyzed at video rates by digital image processing. Complete rotations of the rod suggest significant amounts of random coil in the linking structure. The close similarity of twist rates for double-headed and single-headed myosin indicates that most of the flexibility originates at or beyond the first pitch of coiled coil in S2 and most likely at the hinge connecting S2 and the light meromyosin. The myosin head has a smaller but still detectable impact on this flexibility, since the addition of ADP to the rigor crossbridge produces differential effects on the torsional characteristics of double-headed versus single-headed myosin.  相似文献   

11.
The myosin total rod, which consists of smaller segments of light meromyosin and heavy meromyosin subfragment-2 (HMM S–2), prepared by limited papain digestion of rabbit myosin, was purified by Sepharose-2B column chromatography. The purified total rod was more homogeneous than any previously reported, and the sodium dodecyl sulfate (SDS) gel electrophoretic method yielded a molecular weight of 22?23 × 104 (11?11.5 × 104 × 2).

Transition temperatures of this purified myosin total rod obtained from the melting profile during heating were 47.5 and 55°C. The results of ORD and CD measurements showed almost full reversibility upon cooling after thermal treatment. However, the results obtained from difference spectra and fluorescence spectra showed incomplete reversibility with hysteresis.

This ostensible dichotomy concerning the structural thermostability of the rod portion of myosin molecule may mean that although ORD and CD studies show almost full reversibility of the helix-coil transition, local irreversible conformational changes, involving aromatic amino acid residues take place. This fact suggests that the renahired α-rope of the myosin total rod can exhibit different properties than the native molecule under conditions where no discernible loss in helix content occurs.  相似文献   

12.
The relationship between crossbridge release and alpha-helix-coil transition in myosin has been investigated by employing synthetic myosin and rod minifilaments prepared in 10 mM-citrate/Tris buffer at pH 7.0 and 8.0. Initial sedimentation velocity and turbidity measurements have established that the minifilament structures obtained at pH 7.0 and 8.0 are relatively similar in size and homogeneity, and can be used in comparative circular dichroism studies. Chemical crosslinkings and proteolytic digestions carried out at pH 7.0 and 8.0 verify that myosin and rod minifilaments undergo the same pH-induced changes as myosin filaments, i.e. a decrease in the rate of subfragment-2 crosslinking to the filament surface, and an increase in proteolytic susceptibility of the light meromyosin-heavy meromyosin hinge at alkaline pH. These results suggest charge-induced release of the S-2 element from the myosin and rod minifilament surface. Circular dichroism measurements reveal a reduced alpha-helical content of myosin (5%) and rod minifilaments (10%) at pH 8.0 compared to the respective pH 7.0 structures. These results establish a direct link between crossbridge release and alpha-helix-coil transition in myosin.  相似文献   

13.
Myosin is an asymmetric protein that comprises two globular heads (S1) and a double-stranded alpha-helical rod. We have investigated the effects of urea and the methylamines trimethylamine oxide (TMA-O) and glycine betaine (betaine) on activity and structure of skeletal muscle myosin. K(+) EDTA ATPase activity of myosin was almost completely inhibited by urea (2M); TMA-O stimulated myosin activity, whereas betaine had no effect. When combined with urea (0-2M), TMA-O or betaine (1 M) effectively protected the ATPase activity of myosin against inhibition. Intrinsic fluorescence measurements showed that in urea or TMA-O (0-2M), there were no shifts in the center of mass of the fluorescence spectrum of myosin, despite a decrease in fluorescence intensity. However, these osmolytes at concentrations above 2M produced a red shift in the emission spectrum. Betaine alone did not alter the center of mass at any concentration tested up to 5.2M. Thus, modifications in ATPase activity induced by low concentrations of solutes (<2M) are not directly correlated with the modifications in myosin structure detected by fluorescence. Both methylamines (>or=1M) were also able to protect myosin structure against urea-induced effects (2-8M). Protection was not observed for S1, supporting the hypothesis that these osmolytes have a biphasic effect on myosin: at lower concentrations there is an effect on the globular portion (S1), and at higher concentrations there is an effect on the coiled-coil (rod) portion of myosin.  相似文献   

14.
Myosin II, like many molecular motors, is a two-headed dimer held together by a coiled-coil rod. The stability of the (S2) rod has implications for head-head interactions, force generation, and possibly regulation. Whether S2 uncoils has been controversial. To test the stability of S2, we constructed a series of "zippered" dimeric smooth muscle myosin II compounds, containing a high-melting temperature 32-amino acid GCN4 leucine zipper in the S2 rod beginning 0, 1, 2, or 15 heptads from the head-rod junction. We then assessed the ability of these and wild-type myosin to bind strongly via two heads to an actin filament by measuring the fluorescence quenching of pyrene-labeled actin induced by myosin binding. Such two-headed binding is expected to exert a large strain that tends to uncoil S2, and hence provide a robust test of S2 stability. We find that wild-type and zippered heavy meromyosin (HMM) are able to bind by both heads to actin under both nucleotide-free and saturating ADP conditions. In addition, we compared the actin affinity and rates for the 0- and 15-zippered HMMs in the phosphorylated "on" state and found them to be very similar. These results strongly suggest that S2 uncoiling is not necessary for two-headed binding of myosin to actin, presumably due to a compliant point in the myosin head(s). We conclude that S2 likely remains intact during the catalytic cycle.  相似文献   

15.
We advance a structural model to account for the rapid elastic element seen in mechanical transient experiments on vertebrate skeletal muscle (A.F. Huxley & Simmons 1971 Nature, Lond. 233, 533-538). In contrast to other crossbridge models, ours does not envisage a myosin rod made up of two rigid portions connected by a hinge, but rather a gradually bending rod portion connecting the heads to the thick filament shaft. We propose that, in relaxed muscle, the subfragment 2 (S2) portion of the myosin rod is bound to the thick filament shaft by ionic interactions analogous to those between the light meromyosin (LMM) portions of the rod that constitute the body of the shaft. These interactions probably involve the alternating zones of positive and negative charge seen in myosin rod amino acid sequences. As the crossbridge cycle that generates tension begins, we propose that part of S2 detaches from the thick filament shaft and bends to enable the myosin head to attach to actin. When tension develops in the crossbridge, the S2 is straightened and more of it becomes detached from the shaft so that the junction between S2 and the myosin heads moves 3-4 nm axially. As tension declines at the end of the crossbridge stroke, we propose that S2 rebinds to the thick filament shaft and that this provides the restoring force to return the junction of the heads and S2 to its original axial position. Thus this movement would have the characteristics of an elastic element; detailed calculations indicate that it would have properties similar to those observed experimentally. Furthermore, this model can account for the radial attractive force seen in rigor and in contracting muscle, the decrease in stiffness when interfilament spacing is increased in skinned muscle, and the increased rate of proteolysis observed at the S2-LMM junction in contracting muscle.  相似文献   

16.
We have analyzed the dependence of actin filament sliding movement on the mode of myosin attachment to surfaces. Monoclonal antibodies (mAbs) that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain (LC2) located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. This method of attachment provides a means of controlling the flexibility and density of myosin on the surface. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these mAbs, and the sliding movement of fluorescently labeled actin filaments was analyzed by video microscopy. Each of these antibodies produced stable myosin-coated surfaces that supported uniform motion of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM mAbs yielded significantly higher velocities (10 microns/s at 30 degrees C) than attachment through anti-LC2 (4-5 microns/s at 30 degrees C). For each antibody, we observed a characteristic value of the myosin density for the onset of F-actin motion and a second critical density for velocity saturation. The specific mode of attachment influences the velocity of actin filaments and the characteristic surface density needed to support movement.  相似文献   

17.
The existence of SH-group concentration axial gradient in frog's retinal rod outer segments has been shown. A diminution of SH-groups in the outer segment apical part points to a damage of the vision pigment during the life span of the rod disks.  相似文献   

18.
The transport function of the purified and reconstituted carnitine carrier from rat liver mitochondria was correlated to modification of its SH-groups by various reagents. The exchange activity and the unidirectional transport, both catalyzed by the carnitine carrier, were effectively inhibited by N-ethylmaleimide and submicromolar concentrations of mercurial reagents, e.g., mersalyl and p-(chloromercuri)benzenesulfonate. When 1 microM HgCl2 or higher concentrations of the above mentioned mercurials were added, another transport mode of the carrier was induced. After this treatment, the reconstituted carnitine carrier catalyzed unidirectional substrate-efflux and -influx with significantly reduced substrate specificity. Control experiments in liposomes without carrier or with inactivated carrier protein proved the dependence of this transport activity on the presence of active carnitine carrier. The mercurial-induced uniport correlated with inhibition of the 'physiological' functions of the carrier, i.e., exchange and substrate specific unidirectional transport. The effect of consecutive additions of various reagents including N-ethylmaleimide, mercurials, Cu(2+)-phenanthroline and diamide on the transport function revealed the presence of at least two different classes of SH-groups. N-Ethylmaleimide blocked the carrier activity by binding to SH-groups of one of these classes. At least one of these SH-groups could be oxidized by the reagents forming S-S bridges. Besides binding to the class of SH-groups to which N-ethylmaleimide binds, mercurials also reacted with SH-groups of the other class. Modification of the latter led to the induction of the efflux-type of carrier activity characterized by loss of substrate specificity.  相似文献   

19.
The appearances in the electron microscope of rat and rabbit skeletal muscle myosin filaments and rod aggregates, formed in the presence of variable amounts of MgATP, were compared at different pH values. It is shown that small amounts of MgATP, similar to those sufficient to trigger the dissociation of the actomyosin complex, were able to modify the geometry of myosin filaments profoundly in the physiological pH range, whereas the conformation of rod aggregates remained unchanged even in the presence of high concentrations of MgATP. Myosin filaments formed in the absence of MgATP displayed the classical spindle-shaped conformation and variable diameters at all pH values, whereas myosin filaments formed in the presence of MgATP in the physiological pH range had constant diameters, similar to those of natural thick filaments. These filaments of constant diameter frayed, rapidly and reversibly, into two types of subfilaments with respective diameters of 4 to 5 nm and 9 to 10 nm, when the pH of the medium was raised above 7.2. Spindle-shaped myosin filaments and rod aggregates remained unchanged by such small changes in pH. It was possible to change the conformation of preformed spindle-shaped filaments by simply adding MgATP to the medium, but this reaction was slow and took several hours to be completed. Relatively high concentrations of MgATP, similar to those in the living cell, increased the solubility of both myosin filaments and rod aggregates in the alkaline pH range (pH greater than or equal to 7.0). Low pH values (less than or equal to 6.5) and excess free Mg2+ (greater than or equal to 6 to 7 mM) abolished both the specific effect of MgATP on myosin filament conformation and its solubilizing effect on both myosin filaments and rod aggregates. The degree of purity of the myosin preparations and the level of phosphorylation of the LC-2 light chains did not influence filament behaviour noticeably and rat and rabbit myosins behaved similarly.  相似文献   

20.
Morphologically similar short myosin and rod filaments (minifilaments) have been prepared in 10 mM Tris--citrate buffer, pH 8.0, in the absence of other myosin or rod forms. Both minifilament systems are dissociated in the same manner in the presence of ATP or pyrophosphate. Identical binding of these ligands to myosin and rod minifilaments suggests that myosin heads play no role in substrate-induced destabilization of the minifilaments. The effects of ATP and pyrophosphate on minifilaments are similar to their dissociating effect on synthetic filaments [Harrington, W. F., & Himmelfarb, S. (1972) Biochemistry 11, 2945--2952], thus justifying their use in conformational studies in lieu of filaments. In view of their small size and homogeneity, the minifilaments constitute an appropriate material for such studies. The binding of pyrophosphate to myosin and rod minifilaments decreases their alpha-helical content, as measured by circular dichroism. No change in the secondary structure of subfragment 1 and light meromyosin is observed upon binding of pyrophosphate, but substantial changes (10%) are detected in subfragment 2. The structural changes in myosin, possibly relevant to contraction, are localized in the subfragment 2 region of the molecule. These results emphasize the importance of charge interactions in the functional behavior of thick filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号