首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect on the low-temperature-induced denaturation temperature of various concentrations of methanol has been studied for lactate dehydrogenase. The results have been compared to similar data for the thermal denaturation temperature. Extrapolations of the low-temperature data show that, in a physiological buffer in the absence of methanol, the cold denaturation temperature would be -30 degrees C. Data obtained with high concentrations of methanol indicate that residues are exposed to a similar degree upon either heat- or cold-induced denaturation. Aggregation does not occur in the cold-denatured protein. Cold-induced denaturation is fully reversible at a protein concentration of 250 micrograms/ml. The spectra of the two denatured forms are similar.  相似文献   

2.
Pig trypsin was chemically modified with the bifunctional compound ethylene glycol-bis(succinic acid N-hydroxysuccinimide ester) to yield EG-trypsin. EG-trypsin showed greater thermal stability (100% active beyond 100 min at 55°C; native only 53% active at 100 min) together with slightly increased tolerance toward some organic solvents. Arg/Lys hydrolysis ratio changed little. Esterase/amidase activity ratio of EG-trypsin in buffer was 11-fold greater than that of native pig trypsin, but 5-fold less in 30% v/v acetonitrile. In buffer, EG-trypsin synthesized the dipeptide benzoyl-Arg-Leu-NH2 at a 3-fold higher rate than native trypsin, but native trypsin outperformed EG-trypsin in 30% v/v acetonitrile.  相似文献   

3.
Commercial preparations of trypsin, varying in activity, were immobilized on a cryogel of polyvinyl alcohol, activated by dialdehydes (terephthalic, succinic, or glutaric) or divinyl sulfone. All preparations of the immobilized enzyme exhibited hydrolytic activity and retained stability for 8 months. In organic media, specimens of immobilized trypsin catalyzed the synthesis of N-carbobenzoxy-L-phenylalanyl-L-arginyl-L-leucine p-nitroanilide from N-carbobenzoxy-L-phenylalanyl-L-arginine methyl ester (or N-carbobenzoxy-L-phenylalanyl-L-arginine) and L-leucine p-nitroanilide, as well as the formation of N-carbobenzoxy-L-alanyl-L-alanyl-L-arginyl-L-phenylalanine p-nitroanilide from N-carbobenzoxy-L-alanyl-L-alanyl-L-arginine and L-phenylalanine p-nitroanilide. The presence of small amounts of water in organic solvents was prerequisite to the biocatalysts manifesting synthase activity in reactions of peptide bond formation.  相似文献   

4.
5.
6.
A trypsin inhibitor was isolated from bovine colostrum by affinity chromatography. Immunoelectrophoresis detected two immunogenic components in the isolated inhibitor, but only one of these was specific for the inhibitor; the other one was identical with an antigen present in liver, kidney, spleen, adrenal, thyroid, thymus, brain, ovarian, testicular and udder tissue and in bull seminal plasma. Using immunoabsorption and immunofluorescence it was shown that the antigens specific for the trypsin inhibitor of colostrum could be demonstrated only in the tissue of an udder that is secreting colostrum. The inhibitor is secreted by the secretory epithelium of the milk alveoli of the udder, during the period when the latter secretes colostrum. This inhibitor was not detected in the milk. Cross-reaction between antisera to colostral inhibitor and basic pancreatic inhibitor or seminal plasma inhibitors yielded negative results. Antiserum to bovine colostral inhibitor showed a positive reaction with inhibitor isolated from porcine colostrum.  相似文献   

7.
The structure of the complex between anhydro-trypsin and pancreatic trypsin inhibitor has been determined by difference Fourier techniques using phases obtained from the native complex (Huber et al., 1974). It was refined independently by constrained crystallographic refinement at 1.9 å resolution. The anhydro-complex has Ser 195 converted to dehydro-alanine. There were no other significant structural changes. In particular, the high degree of pyramidalization of the C atom of Lys 15 (I) of the inhibitor component observed in the native complex is maintained in the anhydro-species.  相似文献   

8.
Using hemoglobin modified by pyridoxal 5'-phosphate as substrate, a trypsin inhibitor from bovine brain was purified by extraction at pH 4.5, ion-exchange chromatography on DEAE-Sephadex A-50, gel filtration on Sephadex G-100 and isoelectric focusing. On a column of Sephadex G-100 the inhibitor exhibited a molecular mass of 78 kDa. The iso-electric point of the inhibitor was 4.3-4.4. The dissociation constant (Ki) for the complex of bovine trypsin and brain inhibitor was estimated to be 3.7 X 10(-10)M as tested with a protein substrate, and 2.4 X 10(-10)M when tested with a synthetic substrate. During purification two other brain trypsin inhibitors were detected.  相似文献   

9.
The preparation and properties of the catalytic subunit of bovine enterokinase   总被引:10,自引:0,他引:10  
A limited reduction of the disulfide bonds of bovine enterokinase (enteropeptidase, EC 3.4.21.9) was accomplished with 50 mM dithioerythritol, at pH 9.0, and at 4 degrees C. The conditions separated the heavy and light subunits quantitatively with improved reliability when compared to the conditions used previously (Savithri, H. S., and Light, A. (1980) Biochim. Biophys. Res. Commun, 94, 360-365). Pancreatic trypsin inhibitor was added to the reaction to ensure that the yield of the heavy subunit was equal to that of the catalytic subunit (light subunit). Otherwise the heavy subunit was subject to extensive degradation. The subunits were alkylated with iodoacetate and then resolved on Sephadex G-150. Amino acid analyses and the incorporation of [14C]carboxymethyl groups showed that 3.1 carboxymethylcysteine residues were in the catalytic subunit and 8.9 in the heavy subunit. The catalytic subunit had normal catalytic activity toward N-benzoyl-L-arginine ethyl ester, enhanced activity toward N-tosyl-L-arginine methyl ester and N-tosyl-L-lysine methyl ester, and lower activity toward N-benzoyl-DL-arginine p-nitroanilide. The catalytic subunit retained the restricted specificity of intact enterokinase, but the rate of activation of trypsinogen was much slower. It is likely that the limited reduction of the disulfide bonds of the catalytic subunit altered the interaction of protein substrates with the specificity site.  相似文献   

10.
11.
Dextran modified with the mono-6-pentylene-diamino-6-deoxy-beta-cyclodextrin derivative was evaluated as a thermoprotectant additive for trypsin. The optimum temperature for trypsin activity was increased by 7 degrees C in the presence of this polymer. The enzyme thermostability was increased from 48.5 to 64 degrees C over 10 min of incubation, and the activation free energy of thermoinactivation at 50 degrees C was increased by 4.1 kJ/mol in the presence of the additive. Trypsin was 6-fold more resistant to autolytic inactivation at alkaline pH in the presence of the polymer.  相似文献   

12.
Rabbit polyclonal antibody was raised to a chemically synthesized nonapeptide (Trp-Ala-Glu-Trp-Cys-Gly-Pro-Cys-Lys) corresponding to the active-site sequence of Escherichia coli thioredoxin. The antiserum efficiently inhibited thioredoxin activity in the standard thioredoxin reductase/NADPH coupled assay. This inhibition was blocked by preincubation of the antiserum with the nonapeptide. Tight association of the E. coli thioredoxin to the active-site antibody required SDS denaturation. These results suggest that thioredoxin reductase (NADPH: oxidized-thioredoxin oxidoreductase, EC 1.6.4.5) alters the conformation of thioredoxin sufficiently to permit binding to the antibody. The antiserum bound to plant and liver thioredoxins. Bovine pancreatic trypsin inhibitor, whose active site (Gly-Pro-Cys-Lys) is homologous to that of thioredoxin, also competes for the active-site antibody. This result led to experiments showing that thioredoxin can inhibit the digestion of cytochrome c by trypsin. The ability of thioredoxin to act as a trypsin inhibitor analogue provides a rationale for thioredoxin's resistance to digestion by trypsin.  相似文献   

13.
The disulfide bond between Cys14 and Cys38 of bovine pancreatic trypsin inhibitor lies on the surface of the inhibitor and forms part of the protease-binding region. The functional properties of three variants lacking this disulfide, with one or both of the Cys residues replaced with Ser, were examined, and X-ray crystal structures of the complexes with bovine trypsin were determined and refined to the 1.58-Å resolution limit. The crystal structure of the complex formed with the mutant with both Cys residues replaced was nearly identical with that of the complex containing the wild-type protein, with the Ser oxygen atoms positioned to replace the disulfide bond with a hydrogen bond. The two structures of the complexes with single replacements displayed small local perturbations with alternate conformations of the Ser side chains. Despite the absence of the disulfide bond, the crystallographic temperature factors show no evidence of increased flexibility in the complexes with the mutant inhibitors. All three of the variants were cleaved by trypsin more rapidly than the wild-type inhibitor, by as much as 10,000-fold, indicating that the covalent constraint normally imposed by the disulfide contributes to the remarkable resistance to hydrolysis displayed by the wild-type protein. The rates of hydrolysis display an unusual dependence on pH over the range of 3.5-8.0, decreasing at the more alkaline values, as compared with the increased hydrolysis rates for normal substrates under these conditions. These observations can be accounted for by a model for inhibition in which an acyl-enzyme intermediate forms at a significant rate but is rapidly converted back to the enzyme-inhibitor complex by nucleophilic attack by the newly created amino group. The model suggests that a lack of flexibility in the acyl-enzyme intermediate, rather than the enzyme-inhibitor complex, may be a key factor in the ability of bovine pancreatic trypsin inhibitor and similar inhibitors to resist hydrolysis.  相似文献   

14.
Sodium cholate at millimolar concentration is able to induce activity in rabbit muscle phosphorylase b in the absence of AMP. The maximum activation of the enzyme in presence of 7 mM sodium cholate was 24% of that achieved by 1 mM AMP. Other bile salts tested showed a negligible activating effect. The Ka for AMP was lowered fivefold by 5 mM of the steroid detergent, while the cooperative binding of the nucleotide was abolished. Phosphorylase b', a modified form of phosphorylase in which the phosphorylation site has been removed by limited tryptic attack, presented an activation profile similar to that of phosphorylase b. In contrast, phosphorylase a was inhibited by the bile salt, while the activity of liver phosphorylase b was not significantly affected. Modification of the AMP site of the enzyme with 2,3-butanedione could not inhibit sodium-cholate-induced activity. tert-Butanol, an organic solvent activator of phosphorylase b, was found to enhance the activity induced by sodium cholate. The interaction of sodium cholate and phosphorylase b was also followed by difference spectroscopy using a fluorescein isothiocyanate--phosphorylase b conjugate. Furthermore, measurements of electron spin resonance demonstrated that the mobility of a spin-label bound at buried--NH2 groups of phosphorylase b decreases cooperatively with increasing bile salt concentration.  相似文献   

15.
16.
The major urinary trypsin inhibitor (UTI) was found to inhibit bovine chymotrypsin and human leucocyte elastase strongly, cathepsin G weakly. No inhibition of porcine pancreatic elastase was observed. The stoichiometry of the inhibition of bovine trypsin by UTI was determined spectrophotometrically to be 1:2 (I/E molar ratio). After incubation of UTI with this enzyme in various molar ratios, two complexes (C1 and C2) could be visualized in alkaline polyacrylamide gel electrophoresis. C1 was isolated by affinity chromatography on Con-A Sepharose. In dodecyl sulfate polyacrylamide gel electrophoresis, C1 was dissociated to give an inhibitory band with the same electrophoretic mobility as native UTI. C2 released an active inhibitory fragment with Mr near 20000. A time-course study demonstrated that at a molar ratio I/E of 1.5:1, the C2 complex appears after two hours of incubation.  相似文献   

17.
18.
Summary Tyrosinase is a copper containing monooxygenase catalyzing the formation of melanin pigments and other polyphenolic compounds from various phenols. This review deals with the recent progress on the molecular structure of the enzyme from Neurospora crassa and the unique features of the binuclear active site copper complex involved in the activation of molecular oxygen and the binding of substrates. The results of the spectroscopic properties of Neurospora tyrosinase will also be discussed in the light of the structural similarity of the copper complex in the oxygen binding hemocyanins.  相似文献   

19.
d-glucosamine was conjugated to bovine trypsin by carbodiimide chemistry, involving a water-soluble carbodiimide and a succinimide ester, with the latter being to increase the yield of the conjugation. Mass spectrometric data suggested that several glycoforms were formed, with around 12 d-glucosamine moieties coupled to each trypsin molecule on average. The moieties were probably coupled to eight carboxyl groups (of glutamyl and aspartyl residues) and to four tyrosyl residues on the surface of the enzyme. The glycated trypsin possessed increased thermal stability. When compared with its unmodified counterpart, T50% was increased by 7 °C, thermal inactivation of the first step was increased 34%, and long-term stability assay revealed 71-times higher residual activity at 25 °C (without stabilizing Ca2+ ions in aqueous buffer) after 67 days. Furthermore, resistance against autolysis was increased almost two-fold. Altered functional properties of the glycated trypsin were also observed. The glycated trypsin was found to become increasingly basophilic, and was found to be slightly structurally altered. This was indicated by 1.2 times higher catalytic efficiency (kcat/Km) than unmodified trypsin against the substrate N-α-benzoyl-l-arginine-p-nitroanilide. Circular dichroism spectropolarimetry suggested a minor change in spatial arrangement of α-helix/helices, resulting in an increased affinity of the glycated trypsin for this small synthetic substrate.  相似文献   

20.
Commercial preparations of trypsin, varying in activity, were immobilized in a cryogel of polyvinyl alcohol, activated by dialdehydes (terephthalic, succinic, or glutaric) or divinyl sulfone. All preparations of the immobilized enzyme exhibited hydrolytic activity and retained stability for 8 months. In an organic solvent environment, specimens of immobilized trypsin catalyzed the synthesis of N-carbobenzoxy-L-phenylalanyl-L-arginyl-L-leucine p-nitroanilide from N-carbobenzoxy-L-phenylalanyl-L-argininine methyl ester (or N-carbobenzoxy-L-phenylalanyl-L-arginine) and L-leucine p-nitroanilide, as well as the formation of N-carbobenzoxy-L-alanyl-L-alanyl-L-arginyl-L-phenylalanine p-nitroanilide from N-carbobenzoxy-L-alanyl-L-alanyl-L-arginine and L-phenylalanine p-nitroanilide. The presence of small amounts of water in organic solvents was prerequisite to the biocatalysts manifesting synthase activity in reactions of peptide bond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号