首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We previously reported that, in a HCO3(-)-free medium, cytoplasmic pH (pHi) of hamster fibroblasts (CCL39) is primarily regulated by an amiloride-sensitive Na+/H+ antiport (L'Allemain, G., Paris, S., and Pouysségur, J. (1984) J. Biol. Chem. 259, 5809-5815). Here we demonstrate the existence of an additional pHi-regulating mechanism in CCL39 cells, namely a Na+-dependent HCO3-/Cl- exchange. Evidence for this system is based on 36Cl- influx studies and on pHi measurements in PS120, a CCL39-derived mutant lacking the Na+/H+ antiport activity. 36Cl- influx rate is a saturable function of external [Cl-] (apparent Km approximately equal to 7 mM), is competitively inhibited by external HCO3- (KI approximately equal to 3 mM), and by stilbene derivatives (KI approximately equal to 20 microM for 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). Measurements of pHi recovery after an acute acid load indicate that PS120 cells possess an acid-extruding mechanism dependent on external HCO3-, which is inhibited by stilbene derivatives and requires external Na+. Since 22Na+ influx is stimulated upon addition of HCO3- to acid-loaded cells and this effect is completely abolished by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, we conclude that Na+ is co-transported with HCO3-, in exchange for intracellular Cl-. In a HCO3(-)-containing medium, this pHi-regulating mechanism appears to have two essential physiological functions for the Na+/H+ antiport-deficient mutant: protection of the cells against excessive cytoplasmic acidification and establishment of a steady-state pHi permissive for growth, at neutral or slightly acidic pHo values (6.6-7.2).  相似文献   

3.
The role of an anion exchange pathway in modulating intracellular pH (pHi) under steady-state and alkaline load conditions was investigated in confluent monolayers of rat type II alveolar epithelial cells using the pH-sensitive fluorescent probe 2'-7'-biscarboxy-ethyl-5,6-carboxylfluorescein. Under steady-state conditions in the presence of 25 mM HCO3-, 5% CO2 at pHo 7.4, pHi was 7.32 in a Na+-replete medium and 7.33 in the absence of Na+. Steady-state pHi was 7.19 in a nominally HCO3(-)-free medium at pHo 7.4, and 7.52 in a Cl(-)-free medium, with both values significantly different from that obtained in the presence of both HCO3- and Cl-. Monolayers in which pHi was rapidly elevated by removal of HCO3-/CO2 from the bathing medium demonstrated an absolute requirement for Cl- to recover toward base-line pHi. The Km of Cl- for the external site of the exchange pathway was 11 +/- 1 mM. Recovery of pHi from the alkaline load in the presence of Cl- was inhibited 60% by the stilbene derivative 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Removal of Cl- from the medium of cells bathed in HCO3-/CO2 resulted in a rapid increment in pHi which returned to base line when Cl- was reintroduced into the bathing medium. In contrast, pHi was not perturbed by removal or addition of Cl- to monolayers bathed in a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-buffered medium, indicating that HCO3- was the preferred species for transport. Recovery of pHi from an alkaline load was not affected by the presence or absence of Na+. These findings define the transport pathway as Na+-independent Cl-/HCO3- exchange. This pathway contributes importantly to determining resting pHi of pneumocytes and enables the cell to recover from an alkaline load.  相似文献   

4.
BSC-1 kidney epithelial cells derived from the African green monkey are known to express a Na+HCO3- symport (Jentsch, T. J., Schill, B. S., Schwartz, P., Matthes, H., Keller, S. K., and Wiederholt, M. (1985) J. Biol. Chem. 260, 15554-15560). In the present work, 4,4-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive 22Na+ uptake into confluent monolayers of BSC-1 is measured in the presence of ouabain (10(-4) M) and amiloride (10(-3) M) to define the interactions between Na+ and HCO3- binding and pH. Dependence of DIDS-sensitive 22Na+ fluxes on either Na+ or HCO3- can be described by Michaelis-Menten kinetics. External apparent Km for HCO3- decreases with increasing Na+ concentration (Km app (HCO3-) = 36 +/- 10, 18 +/- 5, and 9 +/- 3 mM at 20, 45, and 151 mM Na+o, respectively (pHo = 7.4)). Similarly, external apparent Km for Na+ decreases with increasing HCO3- concentration (Km app (Na+) = 73 +/- 22, 28 +/- 8, and 14 +/- 4 mM at 6, 17, and 56 mM HCO3o-, respectively (pHo = 7.4)). Vmax app remains constant within the experimental error. When data are replotted as a function of calculated NaCO3- concentration, they can be approximated by a single Michaelis-Menten equation. DIDS-sensitive uptake at constant Na+ and HCO3- displays a broad pH optimum in the range between 7.2 and 7.6. The data are compatible with the ion pair model in which the transported species, NaCO3-, binds to the transport site with Km = 15.3 +/- 4 microM. However, the data may also be fitted by either a random or ordered bireactant system. Sets of parameters necessary for these fits are given.  相似文献   

5.
1. Regulation of the cytoplasmic pH(pHi) was studied in quiescent and activated human neutrophils. Acid-loaded unstimulated cells regulate pHi by activating an electroneutral Na+/H+ exchange. 2. When activated, neutrophils undergo a biphasic change in pHi: an acidification followed by an alkalinization. The latter is due to stimulation of the Na+/H+ antiport. 3. The acidification, which is magnified in Na+-free or amiloride-containing media, is associated with net H+ efflux from the cells. 4. A good correlation exists between cytoplasmic acidification and superoxide generation: inhibition of the latter by adenosine, deoxyglucose or pertussis toxin also inhibits the pHi changes. 5. Moreover, acidification is absent in chronic granulomatous disease patients, which cannot generate superoxide. 6. Regulation of pHi is essential for neutrophil function. The oxygen dependent bactericidal activity is inhibited upon cytoplasmic acidification. This can result from impairment of Na+/H+ exchange, or from influx of exogenous acid equivalents. 7. The latter mechanism may account for the inability of neutrophils to resolve bacterial infections in abscesses, which are generally made acidic by accumulation of organic acids that are by-products of bacterial anaerobic metabolism.  相似文献   

6.
The amiloride-sensitive and nonelectrogenic Na+-H+ exchange system of eucaryotic cells is currently a topic of great interest. The results of membrane transport in the presence of protons are shown to be similar in two cases: when H+ is transferred in one direction or OH- -in the opposite direction. Therefore, in principle Na+-H+ exchange can be performed by two different mechanisms: Na+/H+ antiport or Na+/OH- symport. However, the kinetic properties of these mechanisms turn out to be quite different. The present study analyses the simplest models of antiport and symport and delineates their important differences. For this purpose the Lineweaver-Burk plot presented as Na+ reverse flow entering a cell 1/JNa (or H+ leaving a cell) versus the reverse concentration of Na+ outside 1/[Na+]0 is most useful. If a series of lines with external pH as a parameter have a common point of intersection placed on the ordinate, it indicates the availability of Na+/H+ antiport. In case of Na+/OH- symport a point of intersection is shifted to the left of the ordinate axis. According to data available in the literature, Na+/H+ antiport manifests itself in dog kidney cells and in hamster lung fibroblasts. In the skeletal muscles of chicken and in rat thymus lymphocytes however, a Na+/OH- symport is apparently present.  相似文献   

7.
The effect of serum, phorbol-12-myristate-13-acetate (TPA), and forskolin on the activity Na+/H+ antiport and the Na(+)-coupled and Na(+)-independent Cl-/HCO3- antiport was studied in Vero cells by measuring 22Na+ and 36Cl- fluxes and changes in cytosolic pH (pHi). The Na(+)-independent Cl-/HCO3- antiport, which acts as an acidifying mechanism, is strongly pH-sensitive. In serum-starved cells it is activated at alkaline cytosolic pH, with a half-maximal activity at pHi approximately 7.20. Incubation with serum increased the activity of the Na(+)-independent Cl-/HCO3- antiport at pHi values from 6.8 to 7.2. Thus serum appeared to alter the pHi sensitivity of this antiporter such that the threshold value for activation of the antiport was shifted to a more acidic value. Na+/H+ antiport was somewhat stimulated initially by addition of serum, but further incubation with serum (greater than 45 min) decreased its activity. The activity of the Na(+)-coupled Cl-/HCO3- antiport, which is the major alkalinizing antiport in Vero cells, was not altered by short-term incubation with serum (less than 10 min) but decreased after prolonged incubation (greater than 45 min). Our findings with TPA and forskolin indicate that the effect of serum is partly mediated by the protein kinase C pathway, whereas the cyclic adenosine monophosphate pathway does not appear to play an important role. The net effect of serum on the pHi-regulating antiports was a slight decrease in intracellular pH.  相似文献   

8.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

9.
Summary Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05±0.01,n=5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 M amiloride or removal of extracellular Na+ (Na o + /H i + and Na i + /H o + exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na o + /H i + exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a set point of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.  相似文献   

10.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

11.
The mechanisms underlying cytoplasmic pH (pHi) regulation in rat thymic lymphocytes were studied using trapped fluorescein derivatives as pHi indicators. Cells that were acid-loaded with nigericin in choline+ media recovered normal pHi upon addition of extracellular Na+ (Nao+). The cytoplasmic alkalinization was accompanied by medium acidification and an increase in cellular Na+ content and was probably mediated by a Nao+/Hi+ antiport. At normal [Na+]i, Nao+/Hi+ exchange was undetectable at pHi greater than or equal to 6.9 but was markedly stimulated by internal acidification. Absolute rates of H+ efflux could be calculated from the Nao+-induced delta pHi using a buffering capacity of 25 mmol X liter-1 X pH-1, measured by titration of intact cells with NH4+. At pHi = 6.3, pHo = 7.2, and [Na+]o = 140 mM, H+ extrusion reached 10 mmol X liter-1 X min-1. Nao+/Hi+ exchange was stimulated by internal Na+ depletion and inhibited by lowering pHo and by addition of amiloride (apparent Ki = 2.5 microM). Inhibition by amiloride was competitive with respect to Nao+. Hi+ could also exchange for Lio+, but not for K+, Rb+, Cs+, or choline+. Nao+/Hi+ countertransport has an apparent 1:1 stoichiometry and is electrically silent. However, a small secondary hyperpolarization follows recovery from acid-loading in Na+ media. This hyperpolarization is amiloride- and ouabain-sensitive and probably reflects activation of the electrogenic Na+-K+ pump. At normal Nai+ values, the Nao+/Hi+ antiport of thymocytes is ideally suited for the regulation of pHi. The system can also restore [Na+]i in Na+-depleted cells. In this instance the exchanger, in combination with the considerable cytoplasmic buffering power, will operate as a [Na+]i- regulatory mechanism.  相似文献   

12.
Two mechanisms are involved in the regulation of the intracellular pH (pHi) of aortic smooth muscle cells: the Na+/H+ antiporter and a Na+-independent HCO3-/Cl- antiporter. The Na+/H+ antiporter acts as a cell alkalinizing mechanism. It is activated by vasopressin and by phorbol esters when cells are incubated in the presence of bicarbonate but is not affected in the absence of bicarbonate. The HCO3-/Cl- antiporter acts as a cell acidifying mechanism. Agents such as forskolin, 8-Br-cAMP, and isoproterenol which raise intracellular cAMP levels inhibit the HCO3-/Cl- antiporter by shifting its pHi dependence in the alkaline direction. Thus, within the same cell type, different hormones control pHi variations by acting on different pHi regulating systems. An increase in pHi can be achieved either by a stimulation of a cell alkalinizing mechanism or by inhibition of a cell acidifying mechanism. A change of the activity of one pHi regulating mechanism modifies the responsiveness of the other to regulatory agents. Bicarbonate turns on the HCO3-/Cl- antiporter, decreases pHi and allows its regulation by protein kinase C through the Na+/H+ antiporter. Inhibition of the HCO3-/Cl- antiporter by cAMP increases the pHi and switches off the protein kinase C-mediated regulation.  相似文献   

13.
Upon stimulation, the gastric parietal cell secretes a large quantity of isotonic HCl across its apical membrane which must be accompanied by the generation of base in the cytosol. The ability of this cell type to regulate cytosolic pH (pHi) was examined as a function of stimulation of acid secretion by histamine or forskolin. The pHi was estimated from the change of fluorescence of the trapped dye, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein-bis-carboxyethylcarbo xy fluorescein in a purified cell suspension of rabbit parietal cells. Stimulation of the cell suspension raised pHi by an average of 0.13 +/- 0.038 pH units. The H+,K+-ATPase inhibitor, SCH28080 (2-methyl-8-[phenyl-methoxy]-imidazo-(1,2)-pyridine-3-acetonitrile) had only a small effect on the increase of pHi, therefore, was largely independent of H+,K+-ATPase activity. In Na+-free medium, where Na+/H+ exchange would be absent, the rise of pHi was only 0.03 pH units. This increase was blocked by SCH28080, showing that this small increment was the result of acid secretion. In Na+-containing medium, 90% of the increase was inhibited by an inhibitor of Na+/H+ exchange, dimethyl amiloride (DMA). This compound also blocked changes in pHi due to changes in extracellular Na+. Accordingly, most of the change in pHi upon stimulation of acid secretion by histamine and forskolin is due to activation of Na+/H+ exchange in the parietal cell basal-lateral membrane. The addition of DMA to stimulated, but not resting cells, gave a rapid acidification that was blocked by inhibition of anion exchange by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), showing that anion exchange was also activated by stimulation. In single cell recording, canalicular and cytosolic pH were monitored simultaneously using 9-amino acridine and dimethyl carboxyfluorescein, respectively. Cytosolic alkalinization correlated with acid accumulation in the secretory canaliculus until a set point was reached. Thereafter, acidification continued without further change in pHi. To determine the role of Na+/H+ and Cl-/HCO3- exchange in acid secretion, Cl(-)-depleted cells were suspended in medium containing 40 mM Cl-. DMA and DIDS each blocked acid secretion by about 40%, but in combination, acid secretion was blocked by more than 90%. Thus, basal-lateral Na+/H+ and Cl-/HCO3- exchange activities are necessary for acid secretion across the apical membrane of the parietal cell.  相似文献   

14.
Enhanced activity of Na+/H+ isoform 1 (NHE-1) and the Na+-independent Cl-/HCO3- exchange (AE) is a feature of the hypertrophied myocardium in spontaneously hypertensive rats (SHR). The present study explored the possibility that sustained intracellular acidosis due to increased myocardial acid loading through AE causes NHE-1 enhancement. To this aim, SHR were treated for 2 weeks with a rabbit polyclonal antibody against an AE3 isoform that was recently developed and proven to have inhibitory effects on myocardial AE activity. We then compared the AE activity in the left ventricle papillary muscles isolated from untreated SHR with antiAE3-treated SHR; AE activity was measured in terms of the rate of intracellular pH recovery after an intracellular alkali load was introduced. AE activity was diminished by approximately 70% in SHR treated with the antiAE3 antibody, suggesting that the AE3 isoform is a major carrier of acid-equivalent influx in the hypertrophied myocardium. However, the antibody treatment failed to normalize NHE-1 activity that remained elevated in the myocardium of normotensive rats. The data therefore rule out the possibility that NHE-1 hyperactivity in hypertensive myocardium was due to sustained intracellular acidosis induced by increased AE activity that characterizes SHR myocardial tissue.  相似文献   

15.
The Na(+)/H(+) exchanger (NHE) and/or the Na(+)/HCO(3)(-) cotransporter (NBC) were blocked during ischemia in isolated rat hearts. Intracellular Na(+) concentration ([Na(+)](i)), intracellular pH (pH(i)), and energy-related phosphates were measured by using simultaneous (23)Na and (31)P NMR spectroscopy. Hearts were subjected to 30 min of global ischemia and 30 min of reperfusion. Cariporide (3 microM) or HCO(3)(-)-free HEPES buffer was used, respectively, to block NHE, NBC, or both. End-ischemic [Na(+)](i) was 320 +/- 18% of baseline in HCO(3)(-)-perfused, untreated hearts, 184 +/- 6% of baseline when NHE was blocked, 253 +/- 19% of baseline when NBC was blocked, and 154 +/- 6% of baseline when both NHE and NBC were blocked. End-ischemic pH(i) was 6.09 +/- 0.06 in HCO(3)(-)-perfused, untreated hearts, 5.85 +/- 0.02 when NHE was blocked, 5.81 +/- 0.05 when NBC was blocked, and 5.70 +/- 0.01 when both NHE and NBC were blocked. NHE blockade was cardioprotective, but NBC blockade and combined blockade were not, the latter likely due to a reduction in coronary flow, because omission of HCO(3)(-) under conditions of NHE blockade severely impaired coronary flow. Combined blockade of NHE and NBC conserved intracellular H(+) load during reperfusion and led to massive Na(+) influx when blockades were lifted. Without blockade, both NHE and NBC mediate acid-equivalent efflux in exchange for Na(+) influx during ischemia, NHE much more than NBC. Blockade of either one does not affect the other.  相似文献   

16.
Primary cultures of rat renal inner medullary collecting duct cells were grown to confluence on glass coverslips and treated permeant supports, and the pH-sensitive fluorescent probe 2,7-biscarboxyethyl-5,6-carboxyfluorescein was employed to delineate the nature of the transport pathways that allowed for recovery from an imposed acid load in a HCO3-/CO2-buffered solution. The H+ efflux rate of acid-loaded cells was 13.44 +/- 0.94 mM/min. Addition of amiloride, 10(-4) M, to the recovery solution reduced the H+ efflux rate to 4.06 +/- 0.63 mM/min. The amiloride-resistant pHi recovery mechanism displayed an absolute requirement for Na+ but was Cl(-)-independent. Studies performed on permeable supports demonstrated that the latter pathway was located primarily on the basolateral-equivalent (BE) cell surface and was inhibited by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In a Na(+)-replete solution containing DIDS (50 microM) and amiloride (10(-4) M), acid-loaded cells failed to return to basal pHi. To delineate further the amiloride-inhibitable component of pHi recovery, monolayers were studied in the nominal absence of HCO3-/CO2. In 70% of monolayers studied, Na(+)-dependent, amiloride-inhibitable H+ efflux was the sole mechanism whereby acid-loaded cells returned to basal pHi. A Na(+)-independent pathway was observed in 30% of monolayers examined and represented only a minor component of the pHi recovery process. In studies performed on permeable supports, the Na(+)-dependent amiloride-inhibitable pathway was found to be confined exclusively to the BE cell surface. In summary, confluent monolayers of rat renal inner medullary collecting duct cells in primary culture possess two major mechanisms that contribute toward recovery from an imposed acid load, namely, Na+/H+ antiport and Na+/HCO3- cotransport. Na(+)-independent pHi recovery mechanisms represent a minor component of the pHi recovery process in the cultured cell. Both the Na+/H+ antiporter and Na+/HCO3- cotransporter are located primarily on the BE cell surface.  相似文献   

17.
Cytotoxic T lymphocyte (CTL)-mediated cytolysis of specifically bound target cells (TC) is thought to be triggered by cross-linking the T-cell antigen receptor (TcR). Biochemical events associated with TcR cross-linking include increased intracellular calcium levels [Ca2+]i, hydrolysis of phosphatidylinositol (PI), and an increase in intracellular pH [pH]i. Whereas CTL-mediated cytolysis of some TC is calcium-dependent, and PI hydrolysis is speculated to trigger the CTL lethal hit via activation of PKC, little is known about changes in [pH]i relating to activation of the lethal hit stage. We report regulation of [pH]i in a cloned CTL by the electroneutral Na+/H+ antiport during activation with PMA and specific antigen-bearing TC. Furthermore, using 5-(N-methyl-N-isobutyl) amiloride (MIBA), a potent antiport inhibitor, we demonstrate that Na+/H+ exchange is not required for activation of CTL cytolytic activity.  相似文献   

18.
The role of cAMP in regulation of intracellular pH in the confluent LLC-PK1 cells was investigated. DibutyrylcAMP and forskolin induce intracellular acidification. This acidification is inhibited by DIDS and ethacrynic acid, inhibitors of Na(+)-independent Cl-/HCO3- exchange, and by removal of extracellular Cl-. In addition, Bt2 cAMP causes Cl- entry into LLC-PK1 cells. These results suggest that cAMP activates Cl- transport, namely Na(+)-independent Cl-/HCO3- exchange, which participates in pHi regulation.  相似文献   

19.
Chinese hamster lung fibroblasts (CCl39) possess in their plasma membrane an amiloride-sensitive Na+/H+ antiport, activated by growth factors. Measurements of intracellular pH (pHi), using equilibrium distribution of benzoic acid, provide evidence for a major role of this antiport in 1) regulation of cytoplasmic pH, in response to an acute acid load or to varying external pH values, and 2) the increase in cytoplasmic pH (by 0.2-0.3 pH unit) upon addition of growth factors (alpha-thrombin and insulin) to G0/G1-arrested cells. Indeed, these two processes are Na+-dependent and amiloride-sensitive; furthermore, CCl39-derived mutant cells, lacking the Na+/H+ exchange activity, are greatly impaired in pHi regulation and present no cytoplasmic alkalinization upon growth factor addition. In wild type G0-arrested cells, the amplitude of the mitogen-induced alkalinization reflects directly the activity of the Na+/H+ antiport, and is tightly correlated with the magnitude of DNA synthesis stimulation. Therefore, we conclude that cytoplasmic pH, regulated by the Na+/H+ antiport, is of crucial importance in the mitogenic response.  相似文献   

20.
Summary Bovine (BPAEC) and human (HPAEC) pulmonary artery endothelial cell monolayers were incubated with either ATP, ATP analogues, or UTP, followed by measurement of intracellular pH (pHi) and the rate of recovery from acidosis. ATP increased baseline pHi and the rate of acid recovery in BPAEC. This response was inhibited by the amiloride analogue, methyisobutylamiloride, demonstrating that activation of the Na+/H+ antiport was responsible for the increase in baseline pHi and the recovery from acidosis. This response had the features of both a P2Y and P2U purinergic receptor, based on the responses to a series of ATP analogues and UTP. In contrast, none of the nucleotides had any significant effect on pHi and Na+/H+ antiport activity in HPAEC. This difference in the response to extracellular nucleotides was not due to a difference in ATP metabolism between cell types, since the ectonucleotidase-resistant analogue, ATPγS, also had no effect on HPAEC. Analogues of cAMP had no effect on pHi or acid recovery in either cell type. Incubation of BPAEC and HPAEC with the photoaffinity ligand [32P] 8-AzATP indicated that both BPAEC and HPAEC possess an ATP-binding protein of 48 kDa. However, BPAEC exhibited an additional binding protein of 87 kDa. Thus, the contrasting response to extracellular ATP between bovine and human pulmonary artery endothelial cells may be related to differences in the signal transduction pathway leading to antiport activation, including different ATP-binding sites on the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号