首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Polyamine binding to 23S rRNA was investigated, using a photoaffinity labeling approach. This was based on the covalent binding of a photoreactive analog of spermine, N1-azidobenzamidino (ABA)-spermine, to Escherichia coli ribosomes or naked 23S rRNA under mild irradiation conditions. The cross-linking sites of ABA-spermine in 23S rRNA were determined by RNase H digestion and primer-extension analysis. Domains I, II, IV and V in naked 23S rRNA were identified as discrete regions of preferred cross-linking. When 50S ribosomal subunits were targeted, the interaction of the photoprobe with the above 23S rRNA domains was elevated, except for helix H38 in domain II whose susceptibility to cross-linking was greatly reduced. In addition, cross-linking sites were identified in domains III and VI. Association of 30S with 50S subunits, poly(U), tRNAPhe and AcPhe-tRNA to form a post-translocation complex further altered the cross-linking, in particular to helices H11–H13, H21, H63, H80, H84, H90 and H97. Poly(U)-programmed 70S ribosomes, reconstituted from photolabeled 50S subunits and untreated 30S subunits, bound AcPhe-tRNA in a similar fashion to native ribosomes. However, they exhibited higher reactivity toward puromycin and enhanced tRNA-translocation efficiency. These results suggest an essential role for polyamines in the structural and functional integrity of the large ribosomal subunit.  相似文献   

2.
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent ‘loosening’ of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.  相似文献   

3.
The effect of two photoreactive analogues of spermine, N(1)-azidobenzamidino- (ABA-) spermine and N(1)-azidonitrobenzoyl- (ANB-) spermine, on ribosomal functions was studied in a cell-free system derived from Escherichia coli. In the dark, both analogues stimulated the binding of AcPhe-tRNA to poly(U)-programmed ribosomes, enhanced the stability of the ternary complex AcPhe-tRNA.poly(U).ribosome (complex C), and caused stimulatory and inhibitory effects on peptidyltransferase activity. ABA-spermine exhibited more pronounced effects than ANB-spermine. Each photoprobe was covalently attached after irradiation to both ribosomal subunits and also to free rRNA isolated from 70S ribosomes. Photolabeled complex C showed a reactivity toward puromycin, similar to that exhibited by complex C reacting reversibly with photoprobes free in solution. The distribution of the incorporated radioactivity among the ribosomal components was determined under two experimental conditions, one stimulating and the other inhibiting peptidyltransferase activity. Under both conditions, ABA-spermine was the strongest cross-linker. Upon stimulatory conditions, 14% of ABA-[(14)C]spermine cross-linked to complex C was bound to the protein fraction. The proteins primarily labeled were identified as S3, S4, L2, L3, L6, L15, L17, and L18. Upon inhibitory conditions, a higher percent of the incorporated radioactivity was found in ribosomal proteins, while the pattern of protein labeling was characterized by a remarkable decrease of cross-linked proteins L2, L3, L6, L15, L17. and L18 and by an increase of cross-linked proteins S9, S18, L1, L16, L22, L23, and L27. On the basis of these results and literature data, the involvement of spermine in the conformation and important functions of ribosomes is discussed.  相似文献   

4.
Two photoreactive derivatives of spermine, azidobenzamidino (ABA)-spermine and azidonitrobenzoyl (ANB)-spermine, were used for mapping of polyamine binding sites in AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli poly(U)-programmed ribosomes. Partial nuclease digestion indicated that the deep pocket formed by nucleosides of the D-stem and the variable loop, as well as the anticodon stem, are preferable polyamine binding sites for AcPhe-tRNA in the free state. ABA-spermine was a stronger cross-linker than ANB-spermine. Both photoprobes were linked to AcPhe-tRNA with higher affinity when the latter was non-enzymatically bound to poly(U)-programmed ribosomes. In particular, the cross-linking at the TψC stem and acceptor stem was substantially promoted. The photolabeled AcPhe-tRNA·poly(U)·ribosome complex exhibited moderate reactivity towards puromycin. The attachment of photoprobes to AcPhe-tRNA was mainly responsible for this defect. A more complicated situation was revealed when the AcPhe-tRNA·poly(U)·ribosome complex was formed in the presence of translation factors; the reactivity towards puromycin was stimulated by irradiating such a complex in the presence of photoprobes at 50 µM, with higher concentrations being inhibitory. The stimulatory effect was closely related with the binding of photoprobes to ribosomes. The results are discussed on the basis of possible AcPhe-tRNA conformational changes induced by the incorporation of photoprobes.  相似文献   

5.
Initiation factor IF-3 is required in addition to IF-1 and IF-2 for maximal initial rate of poly(U)-directed binding of AcPhe-tRNA to 30S ribosomal subunits of E. coli. Incubation periods longer than 10 sec, by which time the reaction is virtually over, progressively obscure the requirement for IF-3 in AcPhe-tRNA binding. IF-3 also stimulates the poly(A, G, U)-directed binding of fMet-tRNA to the 30S ribosomal subunit, but in this case, significant stimulation can still be observed even with extended incubation. These results indicate that IF-3 functions similarly in the translation of synthetic mRNA, as it does with natural mRNA, participating in ribosome dissociation and in the formation of the initiation complex from the 30S ribosomal subunit.  相似文献   

6.
The specificity of the cell-free system of Escherichia coli for mRNA was examined, and the “accessibility” of some natural and synthetic RNAs to the ribosomes was determined by measurement of AcPhe-tRNA and fMet-tRNA binding, AcPhe-puromycin and fMet-puromycin formation, and polypeptide synthesis. The E. coli system effectively initiates the translation of various synthetic RNAs with AcPhe-tRNA or fMet-tRNA under conditions optimal for the translation of viral RNA. Poly(A,G,U) is accessible to the ribosomes according to all of the above criteria. Poly(A,C,G,U), 23 S rRNA, R17 RNA, and MS2 RNA, on the other hand, show limited accessibility when tested for initiator tRNA binding, or for AcPhe-puromycin and fMet-puromycin formation. MS2 and R17 RNA, but not poly(A,C,G,U) and 23 S rRNA, show accessibility when measured by polypeptide synthesis. The results suggest that, except at initiator sites of natural mRNA, an RNA containing about equal amounts of all four bases is inaccessible to E. coli ribosomes for polypeptide synthesis. Rate constants obtained for fMet-tRNA binding with MS2 RNA, poly(A,G,U), and poly(C,G,U) indicate that the ribosomes do not have any special affinity for the viral RNA. Thus, the selection of the initiator site in protein synthesis may be critically determined more by the accessibility of the initiator codon than by ribosomal recognition of the site.  相似文献   

7.
8.
Preparation of pure ribosomal subunits carrying lethal mutations is necessary for studying every essential functional region of ribosomal RNA. Affinity purification via a tag, inserted into rRNA proved to be procedure of choice for purification of such ribosomal subunits. Here we describe fast and simple purification method for the 30S ribosomal subunits using affinity chromatography. Streptavidin-binding tag was inserted into functionally neutral helix 33a of the 16 S rRNA from Escherichia coli. Tagged ribosomal subunits were shown to be expressed in E. coli and could be purified. Purified subunits with affinity tag behave similarly to the wild type subunits in association with the 50S subunits, toe-printing and tRNA binding assays. Tagged 30S subunits could support cell growth in the strain lacking wild type 30S subunits and only marginally change the growth rate of bacteria. The presented purification method is thus suitable for further use in purification of 30S subunits carrying any lethal mutations.  相似文献   

9.
[35S]--70S ribosomes (150 Ci/mmol) were isolated from E. coli MRE-600 cells grown on glucose-mineral media in the presence of [35S] ammonium sulfate. The labeled 30S and 50S subunits were obtained from [35S] ribosomes by centrifugation in a sucrose density gradient of 10--30% under dissociating conditions (0.5 mM Mg2+). The activity of [35S]--70S ribosomes obtained by reassociation of the labeled subunits during poly(U)-dependent diphenylalanine synthesis was not less than 70%. The activity of [35S]--70S ribosomes during poly(U)-directed polyphenylalanine synthesis was nearly the same as that of the standard preparation of unlabeled ribosomes. The 23S, 16S and 5S RNAs isolated from labeled ribosomes as total rRNA contained no detectable amounts of their fragments as revealed by polyacrylamide gel electrophoresis. The [35S] ribosomal proteins isolated from labeled ribosomes were analyzed by two-dimensional gel electrophoresis. The [35S] label was found in all proteins, with the exception of L20, L24 and L33 which did not contain methionine or cysteine residues.  相似文献   

10.
Association of nascent polypeptide with 30S ribosomal subunits   总被引:1,自引:1,他引:0  
1. Crude extracts of Escherichia coli were used to synthesize nascent peptides under the direction of endogenous mRNA and in the presence of radioactive amino acids. Analysis of such extracts by sucrose-gradient centrifugation in low Mg2+ concentration has shown that after 2min of incubation approximately 14% of the total labelled protein recovered on the gradient, in association with whole ribosomes, sediments with 30S ribosomal subunits; this value rises to approximately 24% after 30min of incubation. The labelled protein associated with 30S ribosomal subunits is insoluble in hot trichloroacetic acid. 2. Similar results were also obtained in extracts that synthesized polypeptides under the direction of either of the synthetic polyribonucleotides poly(A) or poly(A,G,C,U). In contrast, however, analysis of crude extracts programmed in protein synthesis by poly(U) has indicated that under these conditions 30S ribosomal subunits have no associated polyphenylalanine; similarly there is little associated peptide after programming of extracts by poly(U,C).  相似文献   

11.
A technique that permitted the reversible dissociation of rat liver ribosomes was used to study the difference in protein-synthetic activity between liver ribosomes of normal and hypophysectomized rats. Ribosomal subunits of sedimentation coefficients 38S and 58S were produced from ferritin-free ribosomes by treatment with 0.8m-KCl at 30 degrees C. These recombined to give 76S monomers, which were as active as untreated ribosomes in incorporating phenylalanine in the presence of poly(U). Subunits from normal and hypophysectomized rats were recombined in all possible combinations and the ability of the hybrid ribosomes to catalyse polyphenylalanine synthesis was measured. The results show that the defect in ribosomes of hypophysectomized rats lies only in the small ribosomal subunit. The 40S but not the 60S subunit of rat liver ribosomes bound poly(U). The only requirement for the reaction was Mg(2+), the optimum concentration of which was 5mm. No apparent difference was seen between the poly(U)-binding abilities of 40S ribosomal subunits from normal or hypophysectomized rats. Phenylalanyl-tRNA was bound by 40S ribosomal subunits in the presence of poly(U) by either enzymic or non-enzymic reactions. Non-enzymic binding required a Mg(2+) concentration in excess of 5mm and increased linearly with increasing Mg(2+) concentrations up to 20mm. At a Mg(2+) concentration of 5mm, GTP and either a 40-70%-saturated-(NH(4))(2)SO(4) fraction of pH5.2 supernatant or partially purified aminotransferase I was necessary for binding of aminoacyl-tRNA. Hypophysectomy of rats resulted in a decreased binding of aminoacyl-tRNA by 40S ribosomal subunits.  相似文献   

12.
The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome''s central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.  相似文献   

13.
The use of some bifunctional Pt(II)-containing cross-linking reagents for investigation of structural organization of ribosomal tRNA- and mRNA-binding centres is demonstrated for various types of [70S ribosome.mRNA-tRNA] complexes. It is shown that treatment of the complexes [70S ribosome.Ac[14C]Phe-tRNA(Phe).poly(U)], [70S ribosome.3'-32pCp-tRNA(Phe).poly(U)] and [70S ribosome.f[35S]Met-tRNA(fMet).AUGU6] with Pt(II)-derivatives results in covalent attachment of tRNA to ribosome. AcPhe-tRNA(Phe) and 3'-pCp-tRNA(Phe) bound at the P site were found to be cross-linked preferentially to 30S subunit. fMet-tRNA(fMet) within the 70S initiation complex is cross-linked to both ribosome subunits approximately in the same extent, which exceeds two-fold the level of the tRNA(Phe) cross-linking. All used tRNA species were cross-linked in the comparable degree both to rRNA and proteins of both subunits in all types of the complexes studied. 32pAUGU6 cross-links exclusively to 30S subunit (to 16S RNA only) within [70S ribosome.32pAUGU6.fMet-tRNA(fMet)] complex. In the absence of fMet-tRNAfMet the level of the cross-linking is 4-fold lower.  相似文献   

14.
The method for isolation of human placenta ribosomal subunits containing intact rRNA has been determined. The method uses fresh unfrozen placenta. Activity of 80S ribosomes obtained via reassociation of 40S and 60S subunits in non-enzymatic poly(U)-mediated Phe-tRNAPhe binding, was near 75% (maximal [14C]Phe-tRNA(Phe) binding was 1.5 mol Phe-tRNA(Phe) per mol of 80S ribosomes). Activity of 80S ribosomes with damaged rRNA isolated from frozen placenta was 2 times lower (the maximum level of poly(U)-dependent Phe-tRNA(Phe) binding was 0.7 mol per mol of ribosomes). The activity 80S ribosomes in poly(U)-mediated synthesis of polyphenylalanine was determined by using fractionated ("ribosomeless") protein synthesising system from rabbit reticulocytes. In this system up to the 50 mol of Phe residues per mol of 80S ribosomes are incorporated in acid insoluble fraction in 1 hour, at 37 degrees C. The obtained level of [14C]phenylalanine incorporation is three times as much as the amount of Phe residues observed for the ribosomal subunits, isolated from frozen placenta.  相似文献   

15.
The in vivo assembly of ribosomal subunits requires assistance by auxiliary proteins that are not part of mature ribosomes. More such assembly proteins have been identified for the assembly of the 50S than for the 30S ribosomal subunit. Here, we show that the RimP protein (formerly YhbC or P15a) is important for the maturation of the 30S subunit. A rimP deletion (ΔrimP135) mutant in Escherichia coli showed a temperature-sensitive growth phenotype as demonstrated by a 1.2-, 1.5-, and 2.5-fold lower growth rate at 30, 37, and 44 °C, respectively, compared to a wild-type strain. The mutant had a reduced amount of 70S ribosomes engaged in translation and showed a corresponding increase in the amount of free ribosomal subunits. In addition, the mutant showed a lower ratio of free 30S to 50S subunits as well as an accumulation of immature 16S rRNA compared to a wild-type strain, indicating a deficiency in the maturation of the 30S subunit. All of these effects were more pronounced at higher temperatures. RimP was found to be associated with free 30S subunits but not with free 50S subunits or with 70S ribosomes. The slow growth of the rimP deletion mutant was not suppressed by increased expression of any other known 30S maturation factor.  相似文献   

16.
A new approach for function and structure study of ribosomes based on oligodeoxyribonucleotide-directed cleavage of rRNA with RNase H and subsequent reconstitution of ribosomal subunits from fragmented RNA has been developed. The E coli 16S rRNA was cleaved at 9 regions belonging to different RNA domains. The deletion of 2 large regions was also produced by cleaving 16S rRNA in the presence of 2 or 3 oligonucleotides complementary to different RNA sites. Fragmented and deleted RNA were shown to be efficiently assembled with total ribosomal protein into 30S-like particles. The capacity to form 70S ribosomes and translate both synthetic and natural mRNA of 30S subunits reconstituted from intact and fragmented 16S mRNA was compared. All 30S subunits assembled with fragmented 16S rRNA revealed very different activity: the fragmentation of RNA at the 781-800 and 1392-1408 regions led to the complete inactivation of ribosomes, whereas the RNA fragmentation at the regions 296-305, 913-925, 990-998, 1043-1049, 1207-1215, 1499-1506, 1530-1539 did not significantly influence the ribosome protein synthesis activity, although it was also reduced. These findings are mainly in accordance with the data on the functional activity of some 16S rRNA sites obtained by other methods. The relations between different 16S RNA functional sites are discussed.  相似文献   

17.
C L Chiam  R Wagner 《Biochemistry》1983,22(5):1193-1200
70S tight-couple ribosomes from Escherichia coli were cross-linked by using the bifunctional reagent phenyl-diglyoxal (PDG). The reaction was stopped after 4-h incubation while still in the linear range. In comparison with untreated ribosomes, 30% of those treated with PDG were shown, by sucrose gradient experiments, not to be separable into their subunits, but remained as 70S particles. There was no detectable change in the structure of the reacted particles when their sedimentation behavior was compared with that of native 70S controls. When the cross-linking reaction was performed in the presence of tRNAPhe and poly(U), the reacted ribosomes retained 40-50% of their tRNA binding activity. The reaction leads predominantly to the formation of RNA-protein cross-links but protein--protein as well as RNA-RNA cross-links could also be detected. Cross-linked material was extracted, and the individual RNAs were separated into 23S, 16S, and 5S RNAs. Proteins were identified electrophoretically after reversal of the RNA-protein cross-links. Proteins were found to be cross-linked to RNAs within and across the ribosomal subunits; the latter are considered to be close to or at the 70S subunit interface. The arrangement of RNA and protein at the subunit interface is discussed.  相似文献   

18.
Summary The appearance of a protein (association factor I) in ribosomes from Bacillus stearothermophilus at stationary phase of growth is described. Association factor I is present on 30S subunits and 30S–50S ribosomal couples, but not on 50S subunits. This protein is responsible for the low levels of polyphenylalanine synthesis shown by stationary phase ribosomes. Association factor I is able to bind to free 30S–50S ribosomal couples but not to polysomes, and exerts its effect by inhibiting the initiation step of protein synthesis. Ribosomes preincubated with association factor I have a decreased ability for polypeptide snythesis directed phage mRNA or poly(U).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号