首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The grey mouse lemur (Microcebus murinus) is a small nocturnal primate exhibiting daily torpor. In constant ambient temperature (22-24 degrees C), body temperature (Tb) and locomotor activity were monitored by telemetry in animals exposed to short (SP: 10 h light/day) or long (LP: 14 light/day) photoperiods. They were first fed ad libitum for 8 days and then subjected to 80% restricted feeding for 8 more days. During ad libitum feeding, locomotor activity was significantly lower in SP-exposed animals than in LP-exposed animals. Whatever the photoperiod, animals entered daily hypothermia within the first hours following the light onset. Depth of daily hypothermia increased irregularly under SP exposure, whereas minimal daily Tb was constantly above 35 degrees C under LP exposure. After the transfer from long photoperiod to short photoperiod corresponding to the induction of seasonal fattening, locomotor activity and depth of controlled daily hypothermia did not change significantly. In contrast, food restriction led to a significant increase in locomotor activity and in frequency of daily torpor (Tb<33 degrees C) and body temperature reached minimum values averaging 25 degrees C. However, SP-exposed animals exhibited lower minimal daily Tb and higher torpor duration than LP exposed animals. Therefore, daily torpor appears as a rapid response to food restriction occurring whatever the photoperiod, although enhanced by short photoperiod.  相似文献   

2.
1. In Phodopus sungorus the frequency and characteristics of daily torpor were not affected by a decrease in temperature. The seasonal cycle of daily torpor is essentially under photoperiodic control. 2. Testicular regression is a necessary condition for daily torpor occurrence. Testosterone and 5 alpha-dihydrotestosterone administration totally inhibited daily torpor in hamsters which were exposed to short days. The temporal inhibition of torpor by steroids had no effect on the seasonal time measuring mechanism governing daily torpor. 3. Castration influenced certain aspects of the daily torpor display. Castrated hamsters showed a delay in terminating torpor season lending further support to the hypothesis that recrudescence of the testis plays a role in terminating the daily torpor season. Castration, when performed before or on the day of transfer to short photoperiod led to an increase in the frequency of torpor bouts and reduce SP exposure duration which is necessary for the daily torpor season beginning.  相似文献   

3.
After approximately 10 wk of exposure to decreasing day lengths, Siberian hamsters (Phodopus sungorus) begin to display spontaneous torpor bouts several times each week. Torpor is associated with reduced daily energy expenditure and lower food consumption and ameliorates the thermoregulatory challenges of winter. We tested the extent to which the energy savings conferred by daily torpor depend on the presence of an insulative pelage. Female hamsters were housed in a winter day length (8L:16D) at 5 degrees C; daily food intake and torpor characteristics were recorded for 5 wk in shaved (furless) or normal hamsters. Torpor-bout incidence decreased by 62% in furless hamsters, but the duration of individual bouts and the minimum body temperature attained during torpor were unaffected by loss of pelage. Body temperature declined more rapidly during entry into torpor and increased more slowly during arousal from torpor in furless than in control hamsters. Energy savings per torpor bout, assessed by the amount of food consumed on days that included a torpor bout, was substantially greater in normal than in furless hamsters (16.0% vs. 3.3%); this difference likely reflects the increased cost of thermoregulation during torpor, as well as the increased caloric expenditure incurred by furless hamsters during arousal from torpor. An insulative pelage may be a prerequisite for the energetic benefits derived from heterothermy in this species.  相似文献   

4.
The gray mouse lemur Microcebus murinus is a rare example of a primate exhibiting daily torpor. In captive animals, we examined the metabolic rate during arousal from torpor and showed that this process involved nonshivering thermogenesis (NST). Under thermoneutrality (28 degrees C), warming-up from daily torpor (body temperature <33 degrees C) involved a rapid (<5 min) increase of O(2) consumption that was proportional to the depth of torpor (n = 8). The injection of a beta-adrenergic agonist (isoproterenol) known to elicit NST induced a dose-dependent increase in metabolic rate (n = 8). Moreover, maximum thermogenesis was increased by cold exposure. For the first time in this species, anatomic and histological examination using an antibody against uncoupling protein (UCP) specifically demonstrated the presence of brown fat. With the use of Western blotting with the same antibody, we showed a likely increase in UCP expression after cold exposure, suggesting that NST is also used to survive low ambient temperatures in this tropical species.  相似文献   

5.
Ageing can progress at different rates according to an individual's physiological state. Natural hypothermia, including torpor and hibernation, is a common adaptation of small mammals to survive intermittent or seasonal declines in environmental conditions. In addition to allowing energy savings, hypothermia and torpor have been associated with retarded ageing and increased longevity. We tested the hypothesis that torpor use slows ageing by measuring changes in the relative telomere length (RTL) of Djungarian hamsters, Phodopus sungorus, a highly seasonal rodent using spontaneous daily torpor, over 180 days of exposure to a short-day photoperiod and warm (approx. 20°C) or cold (approx. 9°C) air temperatures. Multi-model inference showed that change in RTL within individuals was best explained by positive effects of frequency of torpor use, particularly at low body temperatures, as well as the change in body mass and initial RTL. Telomere dynamics have been linked to future survival and proposed as an index of rates of biological ageing. Our results therefore support the hypothesis that daily torpor is associated with physiological changes that increase somatic maintenance and slow the processes of ageing.  相似文献   

6.
Cold resistance appears altered with aging. Among existing hypotheses, the impaired capacity in response to cold could be related to an altered regulation of plasma IGF-1 concentration. The combined effects of age and cold exposure were studied in a short-living primate, the gray mouse lemur (Microcebus murinus), which adjusts its energy balance using a daily torpor phase, to avoid high energy cost of normothermia maintenance. Changes in body mass, core temperature, locomotor activity, and caloric intake were monitored under 9-day exposures to 25 degrees C and 12 degrees C in captive animals in winter conditions. Short-term (after 2 days) and long-term (after 9 days) cold-induced changes in IGF-1 levels were also evaluated. In thermoneutral conditions (25 degrees C), general characteristics of the daily rhythm of core temperature were preserved with age. At 12 degrees C, age-related changes were mainly characterized by a deeper hypothermia and an increased frequency of torpor phases, associated with a loss of body mass. A short-term cold-induced decrease in plasma IGF-1 levels was observed. IGF-1 levels returned to basal values after 9 days of cold exposure. No significant effect of age could be evidenced on IGF-1 response. However, IGF-1 levels of cold-exposed aged animals were negatively correlated with the frequency of daily torpor. Responses exhibited by aged mouse lemurs exposed to cold revealed difficulties in the maintenance of normothermia and energy balance and might involve modulations of IGF-1 levels.  相似文献   

7.
1. Male and female Djungarian hamsters (Phodopus sungorus) were gonadectomized or sham-operated after 12 weeks of exposure to short photoperiods (10L:14D). Half of the animals were single housed and transferred to a cold environment (7 degrees C) at week 13 of short days and half were transferred to cold at week 21. The time courses of short photoperiod induced seasonal changes in body weight, pelage color stage, and daily torpor were monitored periodically until the experiment was terminated after 34 weeks of short days. 2. The total duration of short photoperiod exposure was of primary importance compared to the duration of cold exposure in regulating seasonal changes in the frequency of daily torpor, body weight and pelage color exhibited by male and female Djungarian hamsters; that is, the change from long to short days was much more effective as a seasonal time cue than was the onset of cold exposure. 3. Gonadectomy did not prevent the occurrence of seasonal torpor in hamsters of either sex, indicating that these cycles are regulated by a time measuring mechanism (seasonal clock) that is largely independent of the gonadal cycle. However, castration did influence certain aspects of the body weight and torpor cycles exhibited by male hamsters. 4. Some castrated animals showed a delay in terminating the torpor season lending further support to the hypothesis that the spontaneous recrudescence of the testes which occurs toward the end of the torpor season may play a role in the termination of torpor in males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
G. Körtner  F. Geiser 《Oecologia》2000,125(3):350-357
Almost all studies on daily torpor in mammals have been conducted in the laboratory under constant environmental conditions. We investigated torpor and activity patterns in free-ranging sugar gliders (Petaurus breviceps, 100 g) using temperature telemetry and compared field data with published information obtained in the laboratory. Body and/or skin temperature and activity patterns of 12 sugar gliders were monitored from autumn to spring. Healthy sugar gliders were active between sunset and sunrise, but on cold or rainy nights activity was substantially reduced. Animals in poor condition occasionally foraged during the day. Eleven gliders were monitored for 8–171 days and all of these entered daily torpor. Torpor was observed on 103 days (17% of observation days), usually occurred on rainy or cold nights, and frequency of torpor changed with season. Torpor bouts lasted between 2 and 23 h (average 13 h) and the body temperature fell to a minimum of 10.4°C. Torpor was thus much deeper, longer and more frequent than in laboratory studies on the same species. Our study shows that cold or wet conditions curtail foraging in wild sugar gliders and that they employ daily torpor regularly during adverse weather. This suggests that minimisation of energy loss by the use of torpor in sugar gliders is pivotal for their survival in the wild. Received: 8 July 1999 / Accepted: 23 December 1999  相似文献   

9.
Under laboratory conditions, rock elephant shrews, Elephantulus myurus, use daily torpor under both short and long photoperiod acclimation. However, use of heterothermy often differs under field and laboratory conditions. We investigated the use of torpor in free-ranging elephant shrews from May 2001 to May 2002. The elephant shrews were capable of daily torpor throughout the year, with torpor most prevalent during winter. We recorded two torpor bouts during early summer (November). We recorded a total of 467 torpor bouts during the year. The mean torpor minimum body temperature (Tbmin) for the whole year was 15.3 degrees +/-4.4 degrees C, and the mean bout length was 8.6+/-3.5 h. These values were in the range expected for daily heterotherms. However, there was some marginal overlap with hibernation characteristics; a few torpor bouts were longer than 24 h in duration, and Tbmin decreased below 10 degrees C. Torpor was highly correlated with low ambient temperature and photoperiod. Torpor was also correlated with invertebrate abundance after controlling for photoperiod effects. During the year in which this study was conducted, the rainfall was 14% below long-term average. Historical rainfall records show that summer rainfall during strong El Nino years is up to 40% below the long-term average. During these drought years, the frequency of summer torpor may be higher, highlighting the need for long-term physiological data in free-ranging animals.  相似文献   

10.
Thermoregulation, energetics and patterns of torpor in the pygmy mouse lemur, Microcebus myoxinus, were investigated under natural conditions of photoperiod and temperature in the Kirindy/CFPF Forest in western Madagascar. M. myoxinus entered torpor spontaneously during the cool dry season. Torpor only occurred on a daily basis and torpor bout duration was on average 9.6 h, and ranged from 4.6 h to 19.2 h. Metabolic rates during torpor were reduced to about 86% of the normothermic value. Minimum body temperature during daily torpor was 6.8 °C at an ambient temperature of 6.3 °C. Entry into torpor occurred randomly between 2000 and 0620 hours, whereas arousals from torpor were clustered around 1300 hours within a narrow time window of less than 4 h. Arousal from torpor was a two-step process with a first passive climb of body temperature to a mean of 27 °C, carried by the daily increase of ambient temperature when oxygen consumption remained more or less constant, followed by a second active increase of oxygen consumption to further raise the body temperature to normothermic values. In conclusion, daily body temperature rhythms in M. myoxinus further reduce the energetic costs of daily torpor seen in other species: they extend to unusually low body temperatures and consequently low metabolic rates in torpor, and they employ passive warming to reduce the energetic costs of arousal. Thus, these energy-conserving adaptations may represent an important energetic aid to the pygmy mouse lemur and help to promote their individual fitness. Accepted: 2 November 1999  相似文献   

11.
Altricial mammals and birds become endothermic at about half the size of adults and presumably would benefit energetically from entering torpor at that time. Because little is known about torpor during development in endotherms, we investigated whether after the establishment of endothermic thermoregulation (i.e. the ability to maintain a high body temperature during cold exposure), Sminthopsis macroura, a small (∼25 g) insectivorous marsupial, is capable of entering torpor and whether torpor patterns change with growth. Endothermic thermoregulation was established when the nest young reached a body mass of ∼10 g, and they were capable of entering torpor early during development at ∼10–12 g, lending some support to the view that torpor is a phylogenetically old mammalian trait. Torpor bout length shortened significantly and the minimum metabolic rate during torpor increased as juveniles approached adult size, and consequently total daily energy expenditure increased steeply with age. Relationships between total daily energy expenditure and body mass during development of S. macroura (slope ∼1.3) differed substantially from the relationship between basal metabolism and body mass in adult endotherms (slope ∼0.75) suggesting that the energy expenditure–size relationship during the development differs substantially from that in adults under thermo-neutral conditions. Our study shows that while torpor can substantially reduce energy expenditure during development of endotherms and hence is likely important for survival during energy bottlenecks, it also may enhance somatic growth when food is limited. We therefore hypothesize that torpor during the development in endotherms is far more widespread than is currently appreciated.  相似文献   

12.
We determined the effect of food availability (presence/absence) and ambient temperature (25/10°C) on daily energy expenditure and the use of activity and torpor in summer-acclimated captiveGraphiurus murinus. Daily energy expenditure declined logarithmically with duration of food deprivation at a mean rate of 11 and 31% per day at 25 and 10°C, respectively. The incidence of torpor in the presence of food at 25°C was low (one in seven individuals) and increased on a single day's exposure to 10°C and with duration of food deprivation. Use of torpor was highest during the day, varied between individuals, and torpor bouts of greater than 24h duration were not noted. With food deprivation, individuals at 25°C initially responded by reducing activity but remained euthermic while the same individuals at 10°C responded by increasing their use of torpor during the light period; this difference in response probably reflects a difference in the relative energetic benefits of torpor at different temperatures.  相似文献   

13.
Pulmonary surfactant is a mixture of phospholipids, neutral lipids, and proteins that controls the surface tension of the fluid lining the lung. Surfactant amounts and composition are influenced by such physiological parameters as metabolic rate, activity, body temperature, and ventilation. Microchiropteran bats experience fluctuations in these parameters throughout their natural daily cycle of activity and torpor. The activity cycle of the microchiropteran bat Chalinolobus gouldii was studied over a 24-h period. Bats were maintained in a room at constant ambient temperature (24 degrees C) on an 8L : 16D cycle. Diurnal changes in the amount and composition of surfactant were measured at 4-h intervals throughout a 24-h period. The C. gouldii were most active at 2 a.m. and were torpid at 2 p.m. Alveolar surfactant increased 1.5-fold immediately after arousal. The proportion of disaturated phospholipid remained constant, while surfactant cholesterol levels increased 1.5-fold during torpor. Alveolar cholesterol in C. gouldii was six times lower than in other mammals. Cholesterol appears to function in maintaining surfactant fluidity during torpor in this species of bat.  相似文献   

14.
Yellow-bellied marmots (Rodentia: Sciuridae) typically hibernate for eight months. This study explored energetic costs of hibernation in young and adults at 10 and 6 degrees C. Age significantly affected the percent time torpid, total and mass-specific VO(2), use of energy during torpor, and daily mass loss at 6 degrees C. Thus young had a higher mass-specific VO(2) during a torpor bout, which was attributed to higher metabolism during deep torpor. Total VO(2) during a bout was higher in young and there were significant temperature/age interactions; young had a higher VO(2) during torpor and deep torpor at 6 degrees C than at 10 degrees C. VO(2) increased at T(E)s below 6 degrees C. Young had a higher daily mass loss than adults at 6 degrees C. Euthermy increased energetic costs 19.3 times over those of torpor and 23.5 times over those of deep torpor. Energy costs are minimized by spending 88.6% of the hibernation period in torpor, by the rapid decline of VO(2) from euthermy to torpor and by allowing T(B) to decline at low T(E). Torpidity results in average energy savings during winter of 83.3% of the costs of maintaining euthermy. Energy savings are greater than those reported for Marmota marmota and M. monax.  相似文献   

15.
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian‐mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30‐fold longer, and mean torpor bout duration >25‐fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.  相似文献   

16.
Arousal from deep hibernation is accompanied by a transient rise of melatonin (Mel) in circulation; there are no comparable analyses of Mel concentrations in species that undergo much shallower, shorter duration episodes of daily torpor. Serum Mel concentrations were determined during arousal from both natural daily torpor and torpor induced by 2-deoxy-D-glucose (2-DG) treatment (2,500 mg/kg, intraperitoneal [IP]); blood samples were drawn from the retro-orbital sinus of anesthetized Siberian hamsters. For animals kept in darkness during torpor, Mel concentrations were highest during early arousal when thermogenesis is maximal, and they decreased as body temperature increased during arousal and returned to baseline once euthermia was reestablished. In hamsters kept in the light during the torpor bout, Mel concentrations were elevated above basal values during arousal, but the response was significantly blunted in comparison with values recorded in darkness. Increased Mel concentrations were detected in hamsters only during arousal from torpor (either natural or 2-DG induced) and were not simply a result of the drug treatment; hamsters that remained euthermic or manifested mild hypothermia after drug treatment maintained basal Mel concentrations. We propose that increased Mel production may reflect enhanced sympathetic activation associated with intense thermogenesis during arousal from torpor rather than an adjustment of the circadian rhythm of Mel secretion.  相似文献   

17.
This study investigated the effect of parasympathetic inhibition on the cardio-ventilatory interaction during torpor in the fat-tailed dunnart (Sminthopsis crassicaudata). Studies on the influence of the autonomic nervous system on cardiac function during torpor have focused on deep hibernation in eutherians. S. crassicaudata was used as a representative of the Metatheria that exhibits shallow, daily torpor as a comparison for the patterns of cardiac function found in other mammalian heterotherms. During torpor, parasympathetic inhibition removed the cardio-ventilatory interaction, eliminated heart rate variability and increased the overall heart rate; these are responses that have been shown to be typical of eutherian hibernators under the same conditions. Similarly, there was evidence to suggest that as the bout of torpor progressed, the variation in instantaneous heart rate decreased as a result of the progressive removal of parasympathetic tone. It has been suggested that the ability to enter a "steady state" during torpor, which is characterised by a regular heart rate, is limited to deep hibernators. On the basis of this, and the results of previous physiological studies, it was proposed that there is little evidence to suggest that there is any physiological difference between shallow, daily torpor and deep hibernation.  相似文献   

18.
During daily torpor in the dwarf Siberian hamster, Phodopus sungorus, metabolic rate is reduced by 65% compared with the basal rate, but the mechanisms involved are contentious. We examined liver mitochondrial respiration to determine the possible role of active regulated changes and passive thermal effects in the reduction of metabolic rate. When assayed at 37 degrees C, state 3 (phosphorylating) respiration, but not state 4 (nonphosphorylating) respiration, was significantly lower during torpor compared with normothermia, suggesting that active regulated changes occur during daily torpor. Using top-down elasticity analysis, we determined that these active changes in torpor included a reduced substrate oxidation capacity and an increased proton conductance of the inner mitochondrial membrane. At 15 degrees C, mitochondrial respiration was at least 75% lower than at 37 degrees C, but there was no difference between normothermia and torpor. This implies that the active regulated changes are likely more important for reducing respiration at high temperatures (i.e., during entrance) and/or have effects other than reducing respiration at low temperatures. The decrease in respiration from 37 degrees C to 15 degrees C resulted predominantly from a considerable reduction of substrate oxidation capacity in both torpid and normothermic animals. Temperature-dependent changes in proton leak and phosphorylation kinetics depended on metabolic state; proton leakiness increased in torpid animals but decreased in normothermic animals, whereas phosphorylation activity decreased in torpid animals but increased in normothermic animals. Overall, we have shown that both active and passive changes to oxidative phosphorylation occur during daily torpor in this species, contributing to reduced metabolic rate.  相似文献   

19.
Patterns of daily torpor were measured in response to photoperiod and food restriction at a constant temperature (18 °C) in two species of elephant shrew (Macroscelidea), Elephantulus rozeti (from Morocco) and Elephantulus myurus (from southern Africa). Body temperature was monitored continuously for ca. 3 months using temperature-sensitive telemeters. Under short photoperiods (8:16 L:D), both species entered spontaneous torpor on an ad libitum diet, but showed a higher frequency of induced torpor when food was restricted. Under long photoperiods (16:8 L:D), E. myurus could be induced to enter daily `summer' torpor. A total of 378 torpor bouts were measured, none of which were longer in duration than 18 h. Under short photoperiods, arousal from torpor was associated with the onset of the photoperiod, whereas the time of entry was variable throughout the scotophase. However, E. myurus tended to phase shift torpor from the photophase to the scotophase under long photoperiods, despite displaying weak circadian amplitudes of body temperature indicative of a photophase rest phase. Both species lacked well-defined circadian amplitudes of body temperature, a pattern thought to be associated with polyphasic activity cycles characteristic of several Elephantulus species. It was concluded that these and other patterns of torpor shown by Elephantulus show similarities with other small Afrotropical insectivores inhabiting semi-arid habitats or unpredictable environments. Accepted: 26 July 2000  相似文献   

20.
为研究冬眠季节的光照条件对贮脂类冬眠动物入眠的影响,在达乌尔黄鼠腹腔埋植体温记录元件iButton,在体重高峰后的下降阶段置于5℃和12L:12D的光照条件下,观察测定其冬眠模式和能量消耗。达乌尔黄鼠冬眠模式出现深冬眠型、少冬眠型和不冬眠型,蛰眠阵包括深冬眠阵、短冬眠阵和日眠阵。不同冬眠阵中最低体温、冬眠阵的持续时间、阵间产热的持续时间、冷却速率和复温速率差异显著;阵间产热的最高体温基本相同。平均每日能量消耗在日眠阵中最高、短冬眠阵中居中、深冬眠阵中最低。入眠时间多集中于黑暗时相,觉醒时间多集中于光照时相。本实验结果提示,在冬眠季节施加光照黑暗循环条件可减少达乌尔黄鼠冬眠的时间,升高阵间最低体温,缩短冬眠阵与阵间产热的持续时间,降低复温速率;增加冬眠期间能量消耗。入眠与觉醒受光照条件影响,具有明显的光暗节律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号