首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysinoalanine [N epsilon-(DL-2-amino-2-carboxyethyl)-L-lysine; LAL], a nephrotoxic lysine analog, inhibits the lysyl-tRNA-synthetase (EC 6.1.1.6) of prokaryotic and eukaryotic cells competitively at micromolar concentrations. Incorporation of [14C]lysine into protein by a cell-free eukaryotic protein-synthesizing system was inhibited by LAL. Inhibition was 69.7% and 18.4% at LAL concentrations of 1.0 mM and 0.1 mM, respectively. LAL was incorporated into protein as well as being an inhibitor as indicated by the incorporation of [14C]LAL into protein by the cell-free eukaryote protein-synthesizing system. The proteins labeled with [14C]LAL co-electrophoresed with those labeled with [14C]lysine. These results indicate that LAL is an inhibitor of both prokaryote and eukaryote lysyl-tRNA-synthetase. Furthermore, it is incorporated into protein. Both of these actions can be factors in the nephrotoxicity of this common food contaminant. Possible mechanisms for the toxicity of lysinoalanine are discussed.  相似文献   

2.
1. Acetyl-CoA carboxylase (EC 6.4.1.2) and methylmalonyl-CoA carboxyltransferase (EC 2.1.3.1) have been isolated from mycelia of Streptomyces noursei var. polifungini, and purified about 50-fold. 2. Both enzymes carboxylate acetyl-CoA and propionyl-CoA; the respective Km values are 1.1 and 1.6 mM with acetyl-CoA carboxylase and 2.5 and 1.25 mM with carboxyltransferase. 3. The activities of both enzymes are inhibited by free fatty acids. Almost total inhibition of methylmalonyl-CoA carboxyltransferase was observed by 0.1 mM-butyrate or 0.1 mM-C14-C18 acids. Acetyl-CoA carobxylase was affected to the same extent by these compounds at concentration of about 1 mM. 4. The role of both carboxylating enzymes is biosynthesis of the antibiotic is discussed.  相似文献   

3.
Effect of detergents on sterol synthesis in a cell-free system of yeast   总被引:1,自引:0,他引:1  
In order to obtain information about the reactivity of enzymes in sterol synthesis of yeast, the effects of some detergents were investigated. Among the detergents used, Triton X-100 was found to exert a unique action, and its effect on the incorporation of 14C-labeled acetate, mevalonate, farnesyl pyrophosphate, or S-adenosyl-L-methionine into squalene, 2,3-oxidosqualene, and sterols in a cell-free system was examined. Triton X-100 showed virtually no effect on the enzyme activities in the reactions from acetyl CoA to farnesyl pyrophosphate, but it had a marked effect on reactions from farnesyl pyrophosphate to ergosterol. Evidence was obtained suggesting that Triton X-100 apparently activated squalene synthetase (EC 2.5.1.21) but inhibited squalene epoxidase (EC 1.14.99.7) and delta 24-sterol methyltransferase (EC 2.1.1.41). The activity of epoxidase was protected from the inhibition by increasing the concentration of cell-free extracts or by the prior addition of lecithin liposomes to the reaction mixture. The inhibition of methyltransferase was partially reversed by treatment with Bio-heads SM-2, but that of epoxidase was not reversed by the treatment.  相似文献   

4.
Trypanosoma brucei genes encoding putative fatty acid synthesis enzymes are homologous to those encoding type II enzymes found in bacteria and organelles such as chloroplasts and mitochondria. It was therefore not surprising that triclosan, an inhibitor of type II enoyl-acyl carrier protein (enoyl-ACP) reductase, killed both procyclic forms and bloodstream forms of T. brucei in culture with 50% effective concentrations (EC(50)s) of 10 and 13 microM, respectively. Triclosan also inhibited cell-free fatty acid synthesis, though much higher concentrations were required (EC(50)s of 100 to 200 microM). Unexpectedly, 100 microM triclosan did not affect the elongation of [(3)H]laurate (C(12:0)) to myristate (C(14:0)) in cultured bloodstream form parasites, suggesting that triclosan killing of trypanosomes may not be through specific inhibition of enoyl-ACP reductase but through some other mechanism. Interestingly, 100 microM triclosan did reduce the level of incorporation of [(3)H]myristate into glycosyl phosphatidylinositol species (GPIs). Furthermore, we found that triclosan inhibited fatty acid remodeling in a cell-free assay in the same concentration range required for killing T. brucei in culture. In addition, we found that a similar concentration of triclosan also inhibited the myristate exchange pathway, which resides in a distinct subcellular compartment. However, GPI myristoylation and myristate exchange are specific to the bloodstream form parasite, yet triclosan kills both the bloodstream and procyclic forms. Therefore, triclosan killing may be due to a nonspecific perturbation of subcellular membrane structure leading to dysfunction in sensitive membrane-resident biochemical pathways.  相似文献   

5.
The effects of gentamycin on the NADPH oxidase (EC 1.6.99.6) from human neutrophils in both whole-cell and fully soluble (cell-free) systems were investigated. Gentamycin was found to inhibit, concentration-dependently, the superoxide generation of neutrophils exposed to phorbol myristate acetate in a whole-cell system and the activation of superoxide-generating NADPH oxidase by sodium dodecyl sulfate in a cell-free system. The concentrations of the drug required for 50% inhibition of the oxidase (IC50) were 150 μM in the whole-cell system and 10 μM in the cell-free system. In addition, in the cell-free system, the drug did not change the Km value for NADPH of the oxidase. However, gentamycin did not the superoxide generation of NADPH oxidase after its activation in the cell-free system, suggesting that the drug do not have superoxide-scavenger action. These results suggest that gentamycin, an aminoglycoside antibiotic, may exhibit an anti-inflammatory action due to inhibition of neutrophil NADPH oxidase activation.  相似文献   

6.
A cell-free system consisting of ribosomes, pH 5 enzymes and supernatant prepared from rat anterior pituitaries was found to be active in the incorporation of 3H-serine into ACTH. The rate of biosyntesis of ACTH, in a cell-free system as, measured by the incorporation of radioactive amino acid, and the rate of biological activity were markedly increased by the addition of CRF. The synthesis of ACTH was significantly inhibited by puromycin and RNAase but was not significantly inhibited by actinomycin D and DNAase.  相似文献   

7.
M H Huang  C C Yang  S R Wang 《Life sciences》1992,51(22):1725-1730
The activities of thymidine kinase and uridine kinase (enzymes for pyrimidine salvage pathway) in phytohemagglutinin (PHA)--prestimulated lymphocytes were inhibited by arginase in a similar pattern to the inhibition on thymidine incorporation. Further study revealed that arginase did not directly affect the activities of these enzymes in the cell-free system. Thymidine kinase and uridine kinase activities of PHA-prestimulated lymphocytes were inhibited by arginase making their activities as low as that cultured in arginine-free RPMI-1640 medium. These results suggest that arginine-depletion in the culture medium is the primary mode of action of arginase on the inhibition of mitogen-stimulated lymphocyte proliferation.  相似文献   

8.
The antibiotic bacitracin was found to inhibit the incorporation of mannose and GlcNAc from their respective sugar nucleotides into lipid-linked saccharides. The inhibition of both systems was apparent in the aorta particulate enzyme system but it was much more pronounced with the solubilized enzyme system. In both cases, GlcNAc incorporation into Dol-P-P-GlcNAc was more sensitive than mannose incorporation into Dol-P-Man, with 50% inhibition being seen at about 0.1–0.2 mm antibiotic. Bacitracin inhibition of mannose incorporation appeared to be overcome at high concentrations of dolichyl phosphate but, in these cases, an unexplained stimulation was observed. However, GlcNAc inhibition could not be overcome by high concentrations of dolichol phosphate, metal ion, or both together. Thus, the mechanism of inhibition by bacitracin is not clear. Bacitracin also inhibited the transfer of mannose from GDP-mannose to lipid-linked oligosaccharides and to glycoprotein in the particulate enzyme, as well as the transfer of radioactivity from Dol-P-Man or from lipid-linked oligosaccharides to glycoprotein. Thus, bacitracin apparently blocks each of the steps in the lipid-linked pathway. In yeast spheroplasts, bacitracin inhibited the incorporation of [14C]mannose into Dol-P-Man, into lipid-linked oligosaccharides, and into glycoprotein. However, in this case, the antibiotic also blocked the incorporation of leucine into protein. Bacitracin also inhibited the cell-free synthesis of mannosyl-phosphoryl-decaprenol in Mycobacterium smegmatis with 50% inhibition being observed at a concentration of about 0.5 mm.  相似文献   

9.
1,2-Diacyl-sn-glycerol : CDPcholine cholinephosphotransferase (EC 2.7.8.2) and acyl-CoA : 1-acyl-sn-glycero-3-phosphocholine acyltransferase (EC 2.3.1.23) activities of rat liver microsomes can be inhibited by centrophenoxine (N,N-dimethylaminoethyl p-chlorophenoxyacetate). This inhibition is brought about by the intact centrophenoxine molecule rather than by the products of hydrolysis. A nonhydrolyzable ether analog of centrophenoxine was synthesized (neophenoxine; N,N-dimethylaminoethyl p-chlorophenoxyethyl ether) and proved most effective in inhibiting the two routes of phosphatidylcholine biosynthesis. While 50% inhibition of the cholinephosphotransferase was attained at 5 mM neophenoxine, 50% inhibition of the acyltransferase required 0.6 mM neophenoxine levels only. Inhibition of the cholinephosphotransferase (Ki approximately 1.5 mM) and the acyltransferase (Ki approximately 1 mM) by neophenoxine was shown to be noncompetitive. Other membrane-bound enzymes, such as glucose-6-phosphatase, monoacylglycerol lipase, alkaline phosphatase or phospholipase A2 were not affected by the inhibitors. Because of this specificity, and because of the high affinity of the microsomal membrane for such agents, centrophenoxine and neophenoxine should prove useful for controlling phosphatidylcholine synthesis and for modulating the phosphatidylcholine deacylation-reacylation cycle.  相似文献   

10.
The angiotensin I-coverting enzyme (peptidyldipeptide hydrolase, EC 3.4.15.1) was isolated from both guinea pig lung and serum; Km and V values were determined using both angiotensin I and hippurylhistidylleucine as substrates. Km values for the lung enzyme were 3.1 mM for hippurylhistidylleucine hippurylhistidylleucine and 0.076 mM for angiotensin I. Inhibition studies were performed and I50 values were obtained with the following inhibitors: angiotensin II (lung, 1.9 - 10(-5) M; serum, 1.7 - 10(-5) M), bradykinin (lung, 2.6 - 10(-6) M; serum, 2.1 - 10(-6) M), and pyrrolidone-Lys-Trp-Ala-Pro (lung, 7.9 - 10(-8) M; serum, 5.6 - 10(-8) M). Both enzymes were glycoproteins and were inhibited by concanavalin A. A maximum inhibition of 35% initial enzymatic activity was observed for both enzymes at a concanavalin A concentration of 4 - 10(-4) M suggesting that the sugar moieties of each enzyme are similar. Both enzymes required NaCl for activity and were inhibited by EDTA. A comparison of kinetic and inhibition properties indicates that both enzymes are quite similar.  相似文献   

11.
In addition to producing the antibiotic thienamycin, Streptomyces cattleya accumulates large amounts of oxalic acid during the course of a fermentation. Washed cell suspensions were utilized to determine the specific incorporation of carbon-14 into oxalate from a number of labeled organic and amino acids. L-[U-14C]aspartate proved to be the best precursor, whereas only a small percentage of label from [1,5-14C]citrate was found in oxalate. Cell-free extracts catalyzed the formation of [14C]oxalate and [14C]acetate from L-[U-14C]aspartate. When L-[4-14C]aspartate was the substrate only [14C]acetate was formed. The cell-free extracts were found to contain oxalacetate acetylhydrolase (EC 3.7.1.1), the enzyme that catalyzes the hydrolysis of oxalacetate to oxalate and acetate. The enzyme is constitutive and is analogous to enzymes in fungi that produce oxalate from oxalacetate. Properties of the crude enzyme were examined.  相似文献   

12.
Amino acid incorporation in a cell-free system derived from rat liver has previously been found to be inhibited by GSSeSG (selenodiglutathione). In the present experiments the effect of GSSeSG on protein synthesis in 3T3-f cells, on growth and protein synthesis in Escherichia coli, and on amino acid incorporation in a cell-free system derived from E. coli, was studied. GSSeSG inhibits the incorporation of [3H]leucine into protein by 3T3-f cells. This inhibition cannot be reversed by removing GSSeSG and is correlated with the uptake of GSSeSG. Sodium selenite (Na2SeO3) and oxidized glutathione had no inhibitory effect in this system. [3H]Uridine or [3H]thymidine incorporation into RNA or DNA was not inhibited, indicating that the primary action of GSSeSG was on protein synthesis. GSSeSG did not influence the growth of E. coli in a synthetic medium, although enhanced amino acid incorporation was observed. In the cell-free system derived from E. coli, amino acid incorporation was not changed by GSSeSG, indicating that elongation factor G, in contrast to elongation factor 2 of mammalian cell systems, is not blocked by GSSeSG.  相似文献   

13.
We recently reported that primary fetal bovine Kidney (PFBK) cells were consistently more sensitive to the cytotoxic effects of fusarium T-2 toxin than Madin-Darby bovine kidney (MDBK) cells in culture. The present report examined the influence of T-2 on selected biochemical parameters of these two culture types. T-2 toxin inhibited incorporation of labeled thymidine, uridine, and leucine in both culture types; at lower concentrations of the toxin, PFBK cells were affected to a greater extent than MDBK cells. T-2 toxin inhibited both the transport of thymidine as well as thymidine incorporation into macromolecules in MDBK cells during initial periods, but did not affect uridine incorporation. The cellular enzymes, K+- dependent phosphatase and succinic dehydrogenase were inhibited in MDBK but not in PFBK cultures; acid phosphatase was not influenced in either culture types. In a cell-free system none of the above enzymes were affected by T-2 until the toxin concentration exceeded 10?5M.  相似文献   

14.
Short time effect of oleate and 1-O-alkyl-2-O-methyl-rac-glycero-3-phosphocholine (AMGPC) on choline incorporation into phosphatidylcholines were studied in HL-60 cells. The non lytic concentration of 50 microM oleate induced a three-fold increase in [3H]choline incorporation into phosphatidylcholine. This stimulation was accompanied by a translocation of the CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15) from cytosol to membranes. By contrast, the ether-lipid AMGPC inhibited [3H]choline incorporation into phosphatidylcholine by 60% at 10 microM. AMGPC had no effect on choline kinase or choline phosphotransferase activities. When AMGPC was added separately to an homogenate, a particulate or a cytosolic fraction, cytidylyltransferase inhibition was observed only in the homogenate. However on particulates recovered from homogenates treated with increasing concentrations of AMGPC, membranous cytidylyltransferase activity decreased dose-dependently. Thus AMGPC had no effect on cytidylyltransferase activity itself but inhibited its translocation from cytosol to membrane. At variance with the well-established positive effect on cytidylyltransferase translocation induced by fatty acids, this is the first demonstration that AMGPC can inhibit cytidylyltransferase translocation in cell-free system.  相似文献   

15.
The isolated brush border membrane of Hymenolepis diminuta incorporates radiolabeled glucose when incubated in the presence of uridine diphospho(UDP)-D-(6-3H)glucose. The pH optimum for incorporation was 7.0 to 7.2 regardless of the buffer used. Transferase activity was maximal in 200 mM Tris buffer; 100 mM phosphate buffer inhibited significantly the incorporation of radiolabeled glucose, whereas 50 mM Tris-maleate and 100 mM PIPES resulted in moderate inhibition of activity. Incorporation of labeled glucose was not inhibited by low concentrations (0.01%) of Triton X-100, but activity was inhibited 50% by 0.25% Triton X-100. Addition of divalent cations to the brush border membrane preparation did not activate transferase activity, but addition of chelating agents (i.e., EDTA or EGTA) inhibited transferase activity nearly 90%. Incorporation of labeled glucose was inhibited by UDP, guanosine diphosphate (GDP), UDP- and GDP-activated monosaccharides, and monosaccharides, indicating that the transferase activity lacked substrate specificity.  相似文献   

16.
Addition of cyclic-AMP (c-AMP) to Streptomyces griseus fermentations inhibited candicidin formation. In a phosphate-free resting cell system, c-AMP inhibited net candicidin formation and incorporation of labeled propionate and p-aminobenzoic acid into the antibiotic but did not inhibit protein synthesis. All nucleotides tested, regardless of the position of the phosphate ester, were effective inhibitors; nucleosides and free bases were not. Inhibition occurred whether the nucleotide was added early or late. The results indicate that inhibition of antibiotic formation by exogenous nucleotides, including cyclic nucleotides, is similar to the effect produced by inorganic phosphate.  相似文献   

17.
Aspartate kinase (EC 2.7.2.4.) has been purified from 7 day etiolated wheat (Triticum aestivum L. var. Maris Freeman) seedlings and from embryos imbibed for 8 h. The enzyme was 50% inhibited by 0.25 mM lysine. In this study wheat aspartate kinase was not inhibited by threonine alone or cooperatively with lysine; these results contrast with those published previously. In vivo regulation of the synthesis of aspartate-derived amino acids was examined by feeding [14C]acetate and [35S]sulphate to 2–3 day germinating wheat embryos in culture in the presence of exogenous amino acids. Lysine (1 mM) inhibited lysine synthesis by 86%. Threonine (1 mM) inhibited threonine synthesis by 79%. Lysine (1 mM) plus threonine (1 mM) inhibited threonine synthesis by 97%. Methionine synthesis was relatively unaffected by these amino acids, suggesting that there are important regulatory sites other than aspartate kinase and homoserine dehydrogenase. [35S]sulphate incorporation into methionine was inhibited 50% by lysine (2 mM) plus threonine (2 mM) correlating with the reported 50% inhibition of growth by these amino acids in this system. The synergistic inhibition of growth, methionine synthesis and threonine synthesis by lysine plus threonine is discussed in terms of lysine inhibition of aspartate kinase and threonine inhibition of homoserine dehydrogenase.Abbreviations AEC S-(2-aminoethyl) cysteine  相似文献   

18.
3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase, the first enzyme of the shikimate pathway was isolated from Nocardia mediterranei. It has a molecular weight of approx. 135,000, and four identical subunits, each with a molecular weight of 35,000. The Km values for phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E-4-P) were 0.4 and 0.25 mM, respectively, and kinetic study showed that LTrp inhibited DAHP synthase activity, but was not competitive with respect to PEP or E-4-P. The enzyme activity was inhibited by excess of E-4-P added in the incubation system. D-ribose 5-phosphate (R-5-P), D-glucose 6-phosphate (G-6-P) or D-sedoheptulose 7-phosphate (Su-7-P) etc. inhibited DAHP synthase in cell-free extract, but on partially purified enzyme no inhibitory effect was detected. The indirect inhibition of R-5-P and other sugar phosphates was considered to be due to the formation of E-4-P catalyzed by the related enzymes present in cell-free extract.  相似文献   

19.
With partially purified enzyme preparations from cell-free extracts of Pseudomonas fluorescens, 3-deoxy-3-fluoro-D-glucose and 3-deoxy-3-fluoro-D-gluconic acid are substrates for glucose oxidase (EC 1.1.3.4.) and gluconate dehydrogenase (EC 1.1.99.3), with K-m values 18.2 mM and 11.8 mM, respectively. The same enzymes that oxidize glucose and gluconic acid probably oxidize 3-deoxy-3-fluoro-D-glucose and 3-deoxy-3-fluoro-D-gluconic acid. The latter fluorinated carbohydrates and the presumed formation of 3-deoxy-3-fluoro-2-keto-D-gluconic acid, which has been isolated as a calcium salt and characterizied, are not substrates for gluconokinase (EC 2.7.1.12). Both 3-deoxy-3-fluoro-D-glucose and 3-deoxy-3-fluoro-D-gluconic acid act as competitive inhibitors of this enzyme preparation for gluconate, with K-i values 47.5 mM and 14.8 mM, respectively.  相似文献   

20.
The synthesis of peptidoglycan by cell-free membrane and membrane+wall preparations from an autolysin-deficient, beta-lactamase-negative mutant of Bacillus licheniformis N.C.T.C. 6346 was studied. The membrane preparation synthesized un-cross-linked polymer, the formation of which was not inhibited by beta-lactam antibiotics. Release of d-alanine by the action of d-alanine carboxypeptidase was inhibited variably according to the antibiotic. This inhibition was reversed by neutral hydroxylamine but not by the action of beta-lactamases or by washing. Bacitracin inhibited peptidoglycan synthesis, but not the d-alanine carboxypeptidase. Examination of peptidoglycan synthesized in the presence of excess of bacitracin showed that synthesis was not restricted to the addition of one disaccharide-pentapeptide unit at each synthetic site, an average of 2-3 disaccharide-pentapeptide units being added. Peptidoglycan synthesis was three- to four-fold more sensitive to vancomycin than was the release of d-alanine by the action of the carboxypeptidase. Incorporation of newly synthesized peptidoglycan into pre-existing cell wall was studied in membrane+wall preparations. This incorporation was catalysed by a benzylpenicillin- and cephaloridine-sensitive transpeptidase. The concentrations of these antibiotics giving 50% inhibition of incorporation were almost identical with those required to inhibit growth of the bacillus. Inhibition of the transpeptidase was reversed by treatment with beta-lactamase or by washing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号