首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present experiments using primary cultures of renal proximal tubule cells derived from wild-type and NHERF-1 knockout animals examines the regulation of NHE3 by phenylthiohydantoin (PTH) and the regulation of phosphate transport in response to alterations in the media content of phosphate. Forskolin (34.8 +/- 6.2%) and PTH (29.7 +/- 1.8%) inhibited NHE3 activity in wild-type proximal tubule cells but neither forskolin (-3.2 +/- 3.3%) nor PTH (-16.6 +/- 8.1%) inhibited NHE3 activity in NHERF-1(-/-) cells. Using adenovirus-mediated gene transfer, expression of NHERF-1 in NHERF-1(-/-) proximal tubule cells restored the inhibitory response to forskolin (28.2 +/- 3.0%) and PTH (33.2 +/- 3.9%). Compared with high phosphate media, incubation of wild-type cells in low phosphate media resulted in a 36.0 +/- 6.3% higher rate of sodium-dependent phosphate transport and a significant increase in the abundance of Npt2a and PDZK1. NHERF-1(-/-) cells, on the other hand, had lower rates of sodium-dependent phosphate uptake and low phosphate media did not stimulate phosphate transport. Npt2a expression was not affected by the phosphate content of the media in NHERF-1 null cells although low phosphate media up-regulated PDZK1 abundance. Primary cultures of mice proximal tubule cells retain selected regulatory pathways observed in intact kidneys. NHERF-1(-/-) proximal tubule cells demonstrate defective regulation of NHE3 by PTH and indicate that reintroduction of NHERF-1 repairs this defect. NHERF-1(-/-) cells also do not adapt to alterations in the phosphate content of the media indicating that the defect resides within the cells of the proximal tubule and is not dependent on systemic factors.  相似文献   

2.
The multi-PDZ domain containing protein Na(+)/H(+) Exchanger Regulatory Factor 1 (NHERF1) binds to Na(+)/H(+) exchanger 3 (NHE3) and is associated with the brush border (BB) membrane of murine kidney and small intestine. Although studies in BB isolated from kidney cortex of wild type and NHERF1(-/-) mice have shown that NHERF1 is necessary for cAMP inhibition of NHE3 activity, a role of NHERF1 in NHE3 regulation in small intestine and in intact kidney has not been established. Here a method using multi-photon microscopy with the pH-sensitive dye SNARF-4F (carboxyseminaphthorhodafluors-4F) to measure BB NHE3 activity in intact murine tissue and use it to examine the role of NHERF1 in regulation of NHE3 activity. NHE3 activity in wild type and NHERF1(-/-) ileum and wild type kidney cortex were inhibited by cAMP, whereas the cAMP effect was abolished in kidney cortex of NHERF1(-/-) mice. cAMP inhibition of NHE3 activity in these two tissues is mediated by different mechanisms. In ileum, a protein kinase A (PKA)-dependent mechanism accounts for all cAMP inhibition of NHE3 activity since the PKA antagonist H-89 abolished the inhibitory effect of cAMP. In kidney, both PKA-dependent and non-PKA-dependent mechanisms were involved, with the latter reproduced by the effect on an EPAC (exchange protein directly activated by cAMP) agonist (8-(4-chlorophenylthio)-2'O-Me-cAMP). In contrast, the EPAC agonist had no effect in proximal tubules in NHERF1(-/-) mice. These data suggest that in proximal tubule, NHERF1 is required for all cAMP inhibition of NHE3, which occurs through both EPAC-dependent and PKA-dependent mechanisms; in contrast, cAMP inhibits ileal NHE3 only by a PKA-dependent pathway, which is independent of NHERF1 and EPAC.  相似文献   

3.
In an attempt to identify proteins that assemble with the apical membrane Na(+)-H(+) exchanger isoform NHE3, we generated monoclonal antibodies (mAbs) against affinity-purified NHE3 protein complexes isolated from solubilized renal microvillus membrane vesicles. Hybridomas were selected based on their ability to immunoprecipitate NHE3. We have characterized in detail one of the mAbs (1D11) that specifically co-precipitated NHE3 but not villin or NaPi-2. Western blot analyses of microvillus membranes and immunoelectron microscopy of kidney sections showed that mAb 1D11 recognizes a 110-kDa protein highly expressed on the apical membrane of proximal tubule cells. Immunoaffinity chromatography was used to isolate the antigen against which mAb 1D11 is directed. N-terminal sequencing of the purified protein identified it as dipeptidyl peptidase IV (DPPIV) (EC ), which was confirmed by assays of DPPIV enzyme activity. We also evaluated the distribution of the NHE3-DPPIV complex in microdomains of rabbit renal brush border. In contrast to the previously described NHE3-megalin complex, which principally resides in a dense membrane population (coated pits) in which NHE3 is inactive, the NHE3-DPPIV complex was predominantly in the microvillar fraction in which NHE3 is active. Serial precipitation experiments confirmed that anti-megalin and anti-DPPIV antibodies co-precipitate different pools of NHE3. Taken together, these studies revealed an unexpected association of the brush border Na(+)-H(+) exchanger NHE3 with dipeptidyl peptidase IV in the proximal tubule. These findings raise the possibility that association with DPPIV may affect NHE3 surface expression and/or activity.  相似文献   

4.
In expression systems and in yeast, Na/H exchanger regulatory factor (NHERF)-1 and NHERF-2 have been demonstrated to interact with the renal brush border membrane proteins NHE3 and Npt2. In renal tissue of mice, however, NHERF-1 is required for cAMP regulation of NHE3 and for the apical targeting of Npt2 despite the presence of NHERF-2, suggesting another order of specificity. The present studies examine the subcellular location of NHERF-1 and NHERF-2 and their interactions with target proteins including NHE3, Npt2, and ezrin. The wild-type mouse proximal tubule expresses both NHERF-1 and NHERF-2 in a distinct pattern. NHERF-1 is strongly expressed in microvilli in association with NHE3, Npt2, and ezrin. Although NHERF-2 can be detected weakly in the microvilli, it is expressed predominantly at the base of the microvilli in the vesicle-rich domain. NHERF-2 appears to associate directly with ezrin and NHE3 but not Npt2. NHERF-1 is involved in the apical expression of Npt2 and the presence of other Npt2-binding proteins does not compensate totally for the absence of NHERF-1 in NHERF-1-null mice. Although NHERF-1 links NHE3 to the actin cytoskeleton through ezrin, the absence of NHERF-1 does not result in a generalized disruption of the architecture of the cell. Thus the mistargeting of Npt2 seen in NHERF-1-null mice likely represents a specific disruption of pathways mediated by NHERF-1 to achieve targeting of Npt2. These findings suggest that the organized subcellular distribution of the NHERF isoforms may play a role in the specific interactions mediating physiological control of transporter function.  相似文献   

5.
Renal parathyroid hormone (PTH) action is often studied at high doses (100 microg PTH/kg) that lower mean arterial pressure significantly, albeit transiently, complicating interpretation of studies. Little is known about the effect of acute hypotension on proximal tubule Na(+) transporters. This study aimed to determine the effects of acute hypotension, induced by aortic clamp or by high-dose PTH (100 microg PTH/kg), on renal hemodynamics and proximal tubule Na/H exchanger isoform 3 (NHE3) and type IIa Na-P(i) cotransporter protein (NaPi2) distribution. Subcellular distribution was analyzed in renal cortical membranes fractionated on sorbitol density gradients. Aortic clamp-induced acute hypotension (from 100 +/- 3 to 78 +/- 2 mmHg) provoked a 62% decrease in urine output and a significant decrease in volume flow from the proximal tubule detected as a 66% decrease in endogenous lithium clearance. There was, however, no significant change in glomerular filtration rate (GFR) or subcellular distribution of NHE3 and NaPi2. In contrast, high-dose PTH rapidly (<2 min) decreased arterial blood pressure to 51 +/- 3 mmHg, decreased urine output, and shifted NHE3 and NaPi2 out of the low-density membranes enriched in apical markers. PTH at much lower doses (<1.4 microg.kg(-1).h(-1)) did not change blood pressure and was diuretic. In conclusion, acute hypotension per se increases proximal tubule Na(+) reabsorption without changing NHE3 or NaPi2 subcellular distribution, indicating that trafficking of transporters to the surface is not the likely mechanism; in comparison, hypotension secondary to high-dose PTH blocks the primary diuretic effect of PTH but does not inhibit the PTH-stimulated redistribution of NHE3 and NaPi2 to the base of the microvilli.  相似文献   

6.
This study examined the effects of chronic blockade of the renal formation of epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid with 1-aminobenzotriazole (ABT; 50 mg.kg(-1). day(-1) ip for 5 days) on pressure natriuresis and the inhibitory effects of elevations in renal perfusion pressure (RPP) on Na(+)-K(+)-ATPase activity and the distribution of the sodium/hydrogen exchanger (NHE)-3 in the proximal tubule of rats. In control rats (n = 15), sodium excretion rose from 2.3 +/- 0.4 to 19.4 +/- 1.8 microeq.min(-1).g kidney weight(-1) when RPP was increased from 114 +/- 1 to 156 +/- 2 mmHg. Fractional excretion of lithium rose from 28 +/- 3 to 43 +/- 3% of the filtered load. Chronic treatment of the rats with ABT for 5 days (n = 8) blunted the natriuretic response to elevations in RPP by 75% and attenuated the increase in fractional excretion of lithium by 45%. In vehicle-treated rats, renal Na(+)-K(+)-ATPase activity fell from 31 +/- 5 to 19 +/- 2 micromol P(i).mg protein(-1).h(-1) and NHE-3 protein was internalized from the brush border of the proximal tubule after an elevation in RPP. In contrast, Na(+)-K(+)-ATPase activity and the distribution of NHE-3 protein remained unaltered in rats treated with ABT. These results suggest that cytochrome P-450 metabolites of arachidonic acid contribute to pressure natriuresis by inhibiting Na(+)-K(+)-ATPase activity and promoting internalization of NHE-3 protein from the brush border of the proximal tubule.  相似文献   

7.
Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone considered a promising therapeutic agent for type 2 diabetes because it stimulates beta cell proliferation and insulin secretion in a glucose-dependent manner. Cumulative evidence supports a role for GLP-1 in modulating renal function; however, the mechanisms by which GLP-1 induces diuresis and natriuresis have not been completely established. This study aimed to define the cellular and molecular mechanisms mediating the renal effects of GLP-1. GLP-1 (1 μg·kg(-1)·min(-1)) was intravenously administered in rats for the period of 60 min. GLP-1-infused rats displayed increased urine flow, fractional excretion of sodium, potassium, and bicarbonate compared with those rats that received vehicle (1% BSA/saline). GLP-1-induced diuresis and natriuresis were also accompanied by increases in renal plasma flow and glomerular filtration rate. Real-time RT-PCR in microdissected rat nephron segments revealed that GLP-1 receptor-mRNA expression was restricted to glomerulus and proximal convoluted tubule. In rat renal proximal tubule, GLP-1 significantly reduced Na(+)/H(+) exchanger isoform 3 (NHE3)-mediated bicarbonate reabsorption via a protein kinase A (PKA)-dependent mechanism. Reduced proximal tubular bicarbonate flux rate was associated with a significant increase of NHE3 phosphorylation at the PKA consensus sites in microvillus membrane vesicles. Taken together, these data suggest that GLP-1 has diuretic and natriuretic effects that are mediated by changes in renal hemodynamics and by downregulation of NHE3 activity in the renal proximal tubule. Moreover, our findings support the view that GLP-1-based agents may have a potential therapeutic use not only as antidiabetic drugs but also in hypertension and other disorders of sodium retention.  相似文献   

8.
The steroid hormone aldosterone is a major regulator of extracellular volume and blood pressure. Aldosterone effectors are for example the epithelial Na(+) channel (ENaC), the Na(+)-K(+)-ATPase and the proximal tubule Na(+)/H(+) exchanger isoform 3 (NHE3). The aim of this study was to investigate whether aldosterone acts directly on proximal tubule cells to stimulate NHE3 and if so whether the EGF-receptor (EGFR) is involved. For this purpose, primary human renal proximal tubule cells were exposed to aldosterone. NHE3 activity was determined from Na(+)- dependent pH-recovery, NHE3 surface expression was determined by biotinylation and immunoblotting. EGFR-expression was assessed by ELISA. pH(i)- measurements revealed an aldosterone-induced increase in NHE3 activity, which was inhibited by the mineralocorticoid receptor blocker spironolactone and by the EGFR-kinase inhibitor AG1478. Immunoprecipitation and immunoblot analysis showed an aldosterone-induced increase in NHE3 surface expression, which was also inhibited by spironolactone and AG1478. Furthermore, aldosterone enhanced EGFR-expression. In conclusion, aldosterone stimulates NHE3 in human proximal tubule cells. The underlying mechanisms include AG1478 inhibitable kinase and are paralleled by enhanced EGFR expression, which could be compatible with EGF-receptor-pathway-dependent surface expression and activity of NHE3 in human primary renal proximal tubule epithelial cells.  相似文献   

9.
Prenatal administration of dexamethasone causes hypertension in rats when they are studied as adults. Although an increase in tubular sodium reabsorption has been postulated to be a factor programming hypertension, this has never been directly demonstrated. The purpose of this study was to examine whether prenatal programming by dexamethasone affected postnatal proximal tubular transport. Pregnant Sprague-Dawley rats were injected with intraperitoneal dexamethasone (0.2 mg/kg) daily for 4 days between the 15th and 18th days of gestation. Prenatal dexamethasone resulted in an elevation in systolic blood pressure when the rats were studied at 7-8 wk of age compared with vehicle-treated controls: 131 +/- 3 vs. 115 +/- 3 mmHg (P < 0.001). The rate of proximal convoluted tubule volume absorption, measured using in vitro microperfusion, was 0.61 + 0.07 nl.mm(-1).min(-1) in control rats and 0.93+ 0.07 nl.mm(-1).min(-1) in rats that received prenatal dexamethasone (P < 0.05). Na(+)/H(+) exchanger activity measured in perfused tubules in vitro using the pH-sensitive dye BCECF showed a similar 50% increase in activity in proximal convoluted tubules from rats treated with prenatal dexamethasone. Although there was no change in abundance of NHE3 mRNA, the predominant luminal proximal tubule Na(+)/H(+) exchanger, there was an increase in NHE3 protein abundance on brush-border membrane vesicles in 7- to 8-wk-old rats receiving prenatal dexamethasone. In conclusion, prenatal administration of dexamethasone in rats increases proximal tubule transport when rats are studied at 7-8 wk old, in part by stimulating Na(+)/H(+) exchanger activity. The increase in proximal tubule transport may be a factor mediating the hypertension by prenatal programming with dexamethasone.  相似文献   

10.
Fibroblast growth factor-23 (FGF-23) inhibits sodium-dependent phosphate transport in brush border membrane vesicles derived from hormone-treated kidney slices of the mouse and in mouse proximal tubule cells by processes involving mitogen-activated protein kinase (MAPK) but not protein kinase A (PKA) or protein kinase C (PKC). By contrast, phosphate transport in brush border membrane vesicles and proximal tubule cells from sodium-hydrogen exchanger regulatory factor-1 (NHERF-1)-null mice were resistant to the inhibitory effect of FGF-23 (10(-9) m). Infection of NHERF-1-null proximal tubule cells with wild-type adenovirus-GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of FGF-23. Infection with adenovirus-GFP-NHERF-1 containing a S77A or T95D mutation also increased basal phosphate transport, but the cells remained resistant to FGF-23 (10(-9) m). Low concentrations of FGF-23 (10(-13) m) and PTH (10(-11) m) individually did not inhibit phosphate transport or activate PKA, PKC, or MAPK. When combined, however, these hormones markedly inhibited phosphate transport associated with activation of PKC and PKA but not MAPK. These studies indicate that FGF-23 inhibits phosphate transport in the mouse kidney by processes that involve the scaffold protein NHERF-1. In addition, FGF-23 synergizes with PTH to inhibit phosphate transport by facilitating the activation of the PTH signal transduction pathway.  相似文献   

11.
As a target site for angiotensin II (A-II), renal proximal tubule is unique in that it may be equipped with a local A-II generating system and that both basolateral and apical membranes may be accessible for A-II's action. We have recently conducted studies to examine these possibilities. With in vitro cultured proximal tubular cells, we have demonstrated de novo synthesis of angiotensinogen and renin. With isolated renal brush border membrane (BBM), we have confirmed the presence of A-II receptors and found that A-II directly stimulated BBM Na(+)-H+ exchange. In search of the signal transduction mechanism, we have found that A-II also activated BBM phospholipase A2 (PLA) and that BBM contained a pertussis toxin-sensitive guanine nucleotide binding protein (G-protein) which mediates the effects of A-II. Further studies showed that prevention of PLA activation abolished A-II's effect on Na(+)-H+ exchange, and that activation of PLA by mellitin and addition of arachidonic acid similarly enhanced Na(+)-H+ exchange activity, suggesting that PLA activation may mediate the stimulatory effect of A-II on Na(+)-H+ exchange. These results thus indicate that a local signal transduction mechanism involving G-protein mediated PLA activation exists in renal BBM which mediates A-II's effect on Na(+)-H+ exchange. Taken together, we propose that, independent of A-II in the circulation, local luminal A-II may serve as an important regulatory system on sodium transport in renal proximal tubule.  相似文献   

12.
Renal tubular citrate transport is accomplished by electrogenic Na(+) coupled dicarboxylate transporter NaDC-1, a carrier subjected to regulation by acidosis. Trafficking of the Na(+)/H(+) exchanger NHE3 is controlled by NHE regulating factors NHERF-1 and NHERF-2 and the serum and glucocorticoid inducible kinase SGK1. To test for a possible involvement in NaDC-1 regulation, mRNA encoding NaDC-1 was injected into Xenopus oocytes with or without cRNA encoding NHERF-1, NHERF-2, SGK1, SGK2, SGK3, and/or the constitutively active form of the related protein kinase B ((T308,S473D)PKB). Succinate induced inward currents (I(succ)) were taken as a measure of transport rate. Coexpression of neither NHERF-1 nor NHERF-2 in NaDC-1 expressing oocytes significantly altered I(succ). On the other hand, coexpression of SGK1, SGK3, and (T308,S473D)PKB stimulated I(succ), an effect further stimulated by additional coexpression of NHERF-2 but not of NHERF-1. The action of the kinases and NHERF-2 may link urinary citrate excretion to proximal tubular H(+) secretion.  相似文献   

13.
ClC-5, a chloride/proton exchanger, is predominantly expressed and localized in subapical endosomes of the renal proximal tubule. Mutations of the CLCN5 gene cause Dent disease. The symptoms of Dent disease are replicated in Clcn5 knock-out mice. Absence of ClC-5 in mice is associated with reduced surface expression of NHE3 in proximal tubules. The molecular basis for this change is not fully understood. In this study, we investigated the mechanisms by which ClC-5 regulates trafficking of NHE3. Whether ClC-5-dependent endocytosis, exocytosis, or both contributed to the altered distribution of NHE3 was examined. First, NHE3 activity in proximal tubules of wild type (WT) and Clcn5 KO mice was determined by two-photon microscopy. Basal and dexamethasone-stimulated NHE3 activity of Clcn5 KO mice was decreased compared with that seen in WT mice, whereas the degree of inhibition of NHE3 activity by increasing cellular concentration of cAMP (forskolin) or Ca(2+) (A23187) was not different in WT and Clcn5 KO mice. Second, NHE3-dependent absorption of HCO(3)(-), measured by single tubule perfusion, was reduced in proximal tubules of Clcn5 KO mice. Third, by cell surface biotinylation, trafficking of NHE3 was examined in short hairpin RNA (shRNA) plasmid-transfected opossum kidney cells. Surface NHE3 was reduced in opossum kidney cells with reduced expression of ClC-5, whereas the total protein level of NHE3 did not change. Parathyroid hormone decreased NHE3 surface expression, but the extent of decrease and the rate of endocytosis observed in both scrambled and ClC-5 knockdown cells were not significantly different. However, the rates of basal and dexamethasone-stimulated exocytosis of NHE3 were attenuated in ClC-5 knockdown cells. These results show that ClC-5 plays an essential role in exocytosis of NHE3.  相似文献   

14.
Dopamine (DA) is a key hormone in mammalian sodium homeostasis. DA induces natriuresis via acute inhibition of the renal proximal tubule apical membrane Na(+)/H(+) exchanger NHE3. We examined the mechanism by which DA inhibits NHE3 in a renal cell line. DA acutely decreases surface NHE3 antigen in dose- and time-dependent fashion without altering total cellular NHE3. Although DA(1) receptor agonist alone decreases surface NHE3, simultaneous DA(2) agonist synergistically enhances the effect of DA(1). Decreased surface NHE3 antigen, caused by stimulation of NHE3 endocytosis, is dependent on intact functioning of the GTPase dynamin and involves increased binding of NHE3 to the adaptor protein AP2. DA-stimulated NHE3 endocytosis can be blocked by pharmacologic or genetic protein kinase A inhibition or by mutation of two protein kinase A target serines (Ser-560 and Ser-613) on NHE3. We conclude that one mechanism by which DA induces natriuresis is via protein kinase A-mediated phosphorylation of proximal tubule NHE3 leading to endocytosis of NHE3 via clathrin-coated vesicles.  相似文献   

15.
We previously showed that Na(+)/H(+)-exchanger regulatory factor-1/Ezrin-radixin-moesin-binding phosphoprotein-50 (NHERF-1/EBP50) co-immunoprecipitated with the human kappa opioid receptor (hKOR) and that its overexpression blocked the kappa agonist U50,488H-induced hKOR down-regulation by enhancing recycling. Here, we show that glutathione S-transferase (GST)-hKOR C-tail interacted with purified NHERF-1/EBP50, whereas GST or GST-C-tails of micro or delta opioid receptors did not. GST-hKOR C-tail, but not GST, bound HA-NHERF-1/EBP50 transfected into Chinese hamster ovary cells and endogenous NHERF-1/EBP50 in opossum kidney proximal tubule epithelial cells (OK cells). The PDZ domain I, but not II, of NHERF-1/EBP50 was involved in the interaction. Association of NHERF-1/EBP50 with hKOR C-tail enhanced oligomerization of NHERF-1/EBP50. NHERF-1/EBP50 was previously shown to regulate Na(+)/H(+)-exchanger 3 (NHE3) activities in OK cells. We found stimulation of OK cells with U50,488H significantly enhanced Na(+)/H(+) exchange, which was blocked by naloxone but not by pertussis toxin pretreatment, indicating it is mediated by KORs but independent of G(i)/G(o) proteins. In OKH cells, a subclone of OK cells expressing a much lower level of NHERF-1/EBP50, U50,488H had no effect on Na(+)/H(+) exchange, although it enhanced p44/42 mitogen-activated protein kinase phosphorylation via G(i)/G(o) proteins similar to that in OK cells. Stable transfection of NHERF-1/EBP50 into OKH cells restored the stimulatory effect of U50,488H upon Na(+)/H(+) exchange. Thus, NHERF-1/EBP50 binds directly to KOR, and this association plays an important role in accelerating Na(+)/H(+) exchange. We hypothesize that binding of the KOR to NHERF-1/EBP50 facilitates oligomerization of NHERF-1/EBP50, leading to stimulation of NHE3. This study provides the first direct evidence that a G protein-coupled receptor through association with NHERF-1/EBP-50 stimulates NHE3.  相似文献   

16.
This study describes the modulation of the ouabain-insensitive Na(+)-ATPase activity from proximal tubule basolateral membranes by cAMP. An increase in dibutyryl-cAMP (d-cAMP) concentration from 10(-8) to 5x10(-5) M stimulates the ouabain-insensitive Na(+)-ATPase activity. The ATPase activity increases from 6.0+/-0.4 to 10.1+/-0.7 nmol Pi mg(-1) min(-1), in the absence and presence of 5x10(-6) M d-cAMP, respectively. Similarly, the addition of cholera toxin (CTX), forskolin (FSK) or guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) also increases the Na(+)-ATPase activity in a dose-dependent manner, with maximal effect at 10(-8) M, 10(-6) M and 10(-7) M, respectively. The effect of 10(-8) M CTX is not additive to the effect of GTPgammaS, and is completely abolished by 200 microM guanosine 5'-O-(2-thiodiphosphate). The stimulatory effects of CTX and FSK on the Na(+)-ATPase activity are accompanied by an increase in cAMP formation by the basolateral membranes of the proximal tubule cells. Furthermore, 10(-8) M protein kinase A peptide inhibitor (PKAi) completely abolishes the stimulatory effect of 5x10(-6) M d-cAMP or 10(-4) M FSK on the Na(+)-ATPase activity. Incubation of the basolateral membranes with [gamma-(32)P]ATP in the presence of d-cAMP or FSK increases the global hydroxylamine-resistant phosphorylation and especially promotes an increase in phosphorylation of protein bands of approximately 100 and 200 kDa. This stimulation is not seen when 10(-8) M PKAi is added simultaneously. Taken together these data suggest that activation of a cAMP/PKA pathway modulates the Na(+)-ATPase activity in isolated basolateral membranes of the proximal tubule.  相似文献   

17.
Although Cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to regulate the activity of NHE3, the potential reciprocal interaction of NHE3 to modulate the protein kinase A (PKA)-dependent regulation of CFTR in epithelial cells is still unknown. In the present work, we describe experiments to define the interactions between CFTR and NHE3 with the regulatory, scaffolding protein, NHERF that organize their PKA-dependent regulation in a renal epithelial cell line that expresses endogenous CFTR. The expression of rat NHE3 significantly decreased PKA-dependent activation of CFTR without altering CFTR expression, and this decrease was prevented by mutation of either of the two rat NHE3 PKA target serines to alanine (S552A or S605A). Inhibition of CFTR expression by antisense treatment resulted in an acute decrease in PKA-dependent regulation of NHE3 activity. CFTR, NHE3, and ezrin were recognized by NHERF-2 but not NHERF-1 in glutathione S-transferase pull-down experiments. Ezrin may function as a protein kinase A anchoring protein (AKAP) in this signaling complex, because blocking the binding of PKA to an AKAP by incubation with the S-Ht31 peptide inhibited the PKA-dependent regulation of CFTR in the absence of NHE3. In the A6-NHE3 cells S-Ht31 blocked the PKA regulation of NHE3 whereas it now failed to affect the regulation of CFTR. We conclude that CFTR and NHE3 reciprocally interact via a shared regulatory complex comprised of NHERF-2, ezrin, and PKA.  相似文献   

18.
With aging, the kidney develops a progressive deterioration of several structures and functions. Proximal tubular acidification is impaired in old rats with a decrease in the activity of brush border Na+/H+ exchange and a fall of H-ion flux measured with micropuncture experiments. In the present work we evaluate the contribution of 5-N-ethyl-n-isopropyl amiloride- (EIPA) and bafilomycin-sensitive bicarbonate flux (JHCO3-) in proximal convoluted tubules of young and aged rats. We performed micropuncture experiments inhibiting the Na+/H+ exchanger with EIPA (10(-4) M) and the V-H+ATPase with bafilomycin (10(-6) M). We used antibodies against the NHE3 isoform of the Na+/H+ exchanger and the subunit E of the V-H+ATPase for detecting by Western blot the abundance of these proteins in brush border membrane vesicles from proximal convoluted tubules of young and old rats. The abundance of NHE3 and the V-H+ATPase was similar in 18-month-old and 3-month-old rats. The bicarbonate flux in old rats was 30% lower than in young rats. EIPA reduced by 60% and bafilomycin by 30% in young rats; in contrast, EIPA reduced by approximately 40% and bafilomycin by approximately 50% in old rats. The inhibited by bafilomycin was the same in young and old rats: 0.62 nmol.cm-2.s-1 and 0.71 nmol.cm-2.s-1, respectively. However, the EIPA-sensitive fraction was larger in young than in old rats: 1.26 nmol.cm-2.s-1 vs. 0.85 nmol.cm-2.s-1, respectively. These results suggest that the component more affected in bicarbonate reabsorption of proximal convoluted tubules from aged rats is the Na+-H+ exchanger, probably a NHE isoform different from NHE3.  相似文献   

19.
We have studied the mechanisms of NaCl transport in the mammalian proximal tubule. Studies of isolated brush-border membrane vesicles confirmed the presence of Na+-H+ exchange and identified Cl(-)-formate and Cl(-)-oxalate exchangers as possible mechanisms of uphill Cl- entry. We found that formate and oxalate each stimulate NaCl absorption in microperfused proximal tubules. Stimulation of NaCl absorption by formate was blocked by the Na+-H+-exchange inhibitor EIPA, whereas stimulation by oxalate was blocked by omission of sulfate from the perfusion solutions. These observations were consistent with recycling of formate from lumen to cell by H+-coupled formate transport in parallel with Na+-H+ exchange and recycling of oxalate by oxalate-sulfate exchange in parallel with Na+-sulfate cotransport. Using isoform-specific antibodies, we found that NHE1 is present on the basolateral membrane of all nephron segments, whereas NHE3 is present on the apical membrane of cells in the proximal tubule and the loop of Henle. The inhibitor sensitivity of Na+-H+ exchange in renal brush-border vesicles and of HCO3- absorption in microperfused tubules suggested that NHE3 is responsible for most, if not all, apical membrane Na+-H+ exchange in the proximal tubule. The role of NHE3 in mediating proximal tubule HCO3- absorption and formate-dependent Cl- absorption was confirmed by studies in NHE3 null mice. Finally, we cloned and functionally expressed CFEX, an anion transporter expressed on the apical surface of proximal tubule cells and capable of mediating Cl(-)-formate exchange.  相似文献   

20.
Na(+)/H(+) exchanger regulatory factor (NHERF) and NHERF2 are PDZ motif proteins that mediate the inhibitory effect of cAMP on Na(+)/H(+) exchanger 3 (NHE3) by facilitating the formation of a multiprotein signaling complex. With the use of antibodies specific for NHERF and NHERF2, immunocytochemical analysis of rat kidney was undertaken to determine the nephron distribution of both proteins and their colocalization with other transporters and with ezrin. NHERF was most abundant in apical membrane of proximal tubule cells, where it colocalized with ezrin and NHE3. NHERF2 was detected in the glomerulus and in other renal vascular structures. In addition, NHERF2 was strongly expressed in collecting duct principal cells, where it colocalized with ROMK. These results indicate a striking difference in the nephron distribution of NHERF and NHERF2 and suggests NHERF is most likely to be the relevant biological regulator of NHE3 in the proximal tubule, while NHERF2 may interact with ROMK or other targets in the collecting duct. The finding that NHERF isoforms occur in different cell types suggests that NHERF and NHERF2 may subserve different functions in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号